3 resultados para basketball training

em Boston University Digital Common


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hand signals are commonly used in applications such as giving instructions to a pilot for airplane take off or direction of a crane operator by a foreman on the ground. A new algorithm for recognizing hand signals from a single camera is proposed. Typically, tracked 2D feature positions of hand signals are matched to 2D training images. In contrast, our approach matches the 2D feature positions to an archive of 3D motion capture sequences. The method avoids explicit reconstruction of the 3D articulated motion from 2D image features. Instead, the matching between the 2D and 3D sequence is done by backprojecting the 3D motion capture data onto 2D. Experiments demonstrate the effectiveness of the approach in an example application: recognizing six classes of basketball referee hand signals in video.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ongoing work towards appearance-based 3D hand pose estimation from a single image is presented. A large database of synthetic hand views is generated using a 3D hand model and computer graphics. The views display different hand shapes as seen from arbitrary viewpoints. Each synthetic view is automatically labeled with parameters describing its hand shape and viewing parameters. Given an input image, the system retrieves the most similar database views, and uses the shape and viewing parameters of those views as candidate estimates for the parameters of the input image. Preliminary results are presented, in which appearance-based similarity is defined in terms of the chamfer distance between edge images.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Training data for supervised learning neural networks can be clustered such that the input/output pairs in each cluster are redundant. Redundant training data can adversely affect training time. In this paper we apply two clustering algorithms, ART2 -A and the Generalized Equality Classifier, to identify training data clusters and thus reduce the training data and training time. The approach is demonstrated for a high dimensional nonlinear continuous time mapping. The demonstration shows six-fold decrease in training time at little or no loss of accuracy in the handling of evaluation data.