3 resultados para average complexity
em Boston University Digital Common
Resumo:
National Science Foundation (CCR-998310); Army Research Office (DAAD19-02-1-0058)
Resumo:
For any q > 1, let MOD_q be a quantum gate that determines if the number of 1's in the input is divisible by q. We show that for any q,t > 1, MOD_q is equivalent to MOD_t (up to constant depth). Based on the case q=2, Moore has shown that quantum analogs of AC^(0), ACC[q], and ACC, denoted QAC^(0)_wf, QACC[2], QACC respectively, define the same class of operators, leaving q > 2 as an open question. Our result resolves this question, implying that QAC^(0)_wf = QACC[q] = QACC for all q. We also prove the first upper bounds for QACC in terms of related language classes. We define classes of languages EQACC, NQACC (both for arbitrary complex amplitudes) and BQACC (for rational number amplitudes) and show that they are all contained in TC^(0). To do this, we show that a TC^(0) circuit can keep track of the amplitudes of the state resulting from the application of a QACC operator using a constant width polynomial size tensor sum. In order to accomplish this, we also show that TC^(0) can perform iterated addition and multiplication in certain field extensions.
Resumo:
This paper demonstrates an optimal control solution to change of machine set-up scheduling based on dynamic programming average cost per stage value iteration as set forth by Cararnanis et. al. [2] for the 2D case. The difficulty with the optimal approach lies in the explosive computational growth of the resulting solution. A method of reducing the computational complexity is developed using ideas from biology and neural networks. A real time controller is described that uses a linear-log representation of state space with neural networks employed to fit cost surfaces.