4 resultados para asymptotically hyperbolic
em Boston University Digital Common
Resumo:
We investigate numerically the ground state phase diagram of the one-dimensional extended Hubbard model, including an on--site interaction U and a nearest--neighbor interaction V. We focus on the ground state phases of the model in the V >> U region, where previous studies have suggested the possibility of dominant superconducting pairing fluctuations before the system phase separates at a critical value V=V_PS. Using quantum Monte Carlo methods on lattices much larger than in previous Lanczos diagonalization studies, we determine the boundary of phase separation, the Luttinger Liquid correlation exponent K_rho, and other correlation functions in this region. We find that phase separation occurs for V significantly smaller than previously reported. In addition, for negative U, we find that a uniform state re-enters from phase separation as the electron density is increased towards half filling. For V < V_PS, our results show that superconducting fluctuations are not dominant. The system behaves asymptotically as a Luttinger Liquid with K_rho < 1, but we also find strong low-energy (but gapped) charge-density fluctuations at a momentum not expected for a standard Luttinger Liquid.
Resumo:
Recent work in sensor databases has focused extensively on distributed query problems, notably distributed computation of aggregates. Existing methods for computing aggregates broadcast queries to all sensors and use in-network aggregation of responses to minimize messaging costs. In this work, we focus on uniform random sampling across nodes, which can serve both as an alternative building block for aggregation and as an integral component of many other useful randomized algorithms. Prior to our work, the best existing proposals for uniform random sampling of sensors involve contacting all nodes in the network. We propose a practical method which is only approximately uniform, but contacts a number of sensors proportional to the diameter of the network instead of its size. The approximation achieved is tunably close to exact uniform sampling, and only relies on well-known existing primitives, namely geographic routing, distributed computation of Voronoi regions and von Neumann's rejection method. Ultimately, our sampling algorithm has the same worst-case asymptotic cost as routing a point-to-point message, and thus it is asymptotically optimal among request/reply-based sampling methods. We provide experimental results demonstrating the effectiveness of our algorithm on both synthetic and real sensor topologies.
Resumo:
One-and two-dimensional cellular automata which are known to be fault-tolerant are very complex. On the other hand, only very simple cellular automata have actually been proven to lack fault-tolerance, i.e., to be mixing. The latter either have large noise probability ε or belong to the small family of two-state nearest-neighbor monotonic rules which includes local majority voting. For a certain simple automaton L called the soldiers rule, this problem has intrigued researchers for the last two decades since L is clearly more robust than local voting: in the absence of noise, L eliminates any finite island of perturbation from an initial configuration of all 0's or all 1's. The same holds for a 4-state monotonic variant of L, K, called two-line voting. We will prove that the probabilistic cellular automata Kε and Lε asymptotically lose all information about their initial state when subject to small, strongly biased noise. The mixing property trivially implies that the systems are ergodic. The finite-time information-retaining quality of a mixing system can be represented by its relaxation time Relax(⋅), which measures the time before the onset of significant information loss. This is known to grow as (1/ε)^c for noisy local voting. The impressive error-correction ability of L has prompted some researchers to conjecture that Relax(Lε) = 2^(c/ε). We prove the tight bound 2^(c1log^21/ε) < Relax(Lε) < 2^(c2log^21/ε) for a biased error model. The same holds for Kε. Moreover, the lower bound is independent of the bias assumption. The strong bias assumption makes it possible to apply sparsity/renormalization techniques, the main tools of our investigation, used earlier in the opposite context of proving fault-tolerance.
Resumo:
We wish to construct a realization theory of stable neural networks and use this theory to model the variety of stable dynamics apparent in natural data. Such a theory should have numerous applications to constructing specific artificial neural networks with desired dynamical behavior. The networks used in this theory should have well understood dynamics yet be as diverse as possible to capture natural diversity. In this article, I describe a parameterized family of higher order, gradient-like neural networks which have known arbitrary equilibria with unstable manifolds of known specified dimension. Moreover, any system with hyperbolic dynamics is conjugate to one of these systems in a neighborhood of the equilibrium points. Prior work on how to synthesize attractors using dynamical systems theory, optimization, or direct parametric. fits to known stable systems, is either non-constructive, lacks generality, or has unspecified attracting equilibria. More specifically, We construct a parameterized family of gradient-like neural networks with a simple feedback rule which will generate equilibrium points with a set of unstable manifolds of specified dimension. Strict Lyapunov functions and nested periodic orbits are obtained for these systems and used as a method of synthesis to generate a large family of systems with the same local dynamics. This work is applied to show how one can interpolate finite sets of data, on nested periodic orbits.