7 resultados para anti-union
em Boston University Digital Common
Resumo:
The print copy of this sermon is held by Pitts Theology Library. The Pitts Theology Library's digital copy was produced as part of the ATLA/ATS Cooperative Digital Resources Initiative (CDRI), funded by the Luce Foundation. Reproduction note: Electronic reproduction. Atlanta, Georgia : Pitts Theology Library, Emory University, 2003. (Thanksgiving Day Sermons, ATLA Cooperative Digital Resources Initiative, CDRI). Joint CDRI project by: Andover-Harvard Library (Harvard Divinity School), Pitts Theology Library (Emory University), and Princeton Theological Seminary Libraries.
Resumo:
http://www.archive.org/details/addressesofrevdr00parkuoft
Resumo:
http://www.archive.org/details/theunionmissiony00spuruoft
Resumo:
http://www.archive.org/details/catholicgrieva00mealrich
Resumo:
The CIL compiler for core Standard ML compiles whole programs using a novel typed intermediate language (TIL) with intersection and union types and flow labels on both terms and types. The CIL term representation duplicates portions of the program where intersection types are introduced and union types are eliminated. This duplication makes it easier to represent type information and to introduce customized data representations. However, duplication incurs compile-time space costs that are potentially much greater than are incurred in TILs employing type-level abstraction or quantification. In this paper, we present empirical data on the compile-time space costs of using CIL as an intermediate language. The data shows that these costs can be made tractable by using sufficiently fine-grained flow analyses together with standard hash-consing techniques. The data also suggests that non-duplicating formulations of intersection (and union) types would not achieve significantly better space complexity.
Resumo:
This article describes a. neural pattern generator based on a cooperative-competitive feedback neural network. The two-channel version of the generator supports both in-phase and anti-phase oscillations. A scalar arousal level controls both the oscillation phase and frequency. As arousal increases, oscillation frequency increases and bifurcations from in-phase to anti-phase, or anti-phase to in-phase oscillations can occur. Coupled versions of the model exhibit oscillatory patterns which correspond to the gaits used in locomotion and other oscillatory movements by various animals.