1 resultado para antagonist yeasts
em Boston University Digital Common
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Repository Napier (1)
- University of Cagliari UniCA Eprints (2)
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (1)
- Aquatic Commons (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (8)
- Aston University Research Archive (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (60)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (5)
- Biodiversity Heritage Library, United States (1)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (34)
- Boston University Digital Common (1)
- Brock University, Canada (19)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- CaltechTHESIS (4)
- Cambridge University Engineering Department Publications Database (3)
- CentAUR: Central Archive University of Reading - UK (66)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (63)
- Cochin University of Science & Technology (CUSAT), India (17)
- CORA - Cork Open Research Archive - University College Cork - Ireland (5)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (1)
- DigitalCommons@The Texas Medical Center (1)
- Duke University (21)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (3)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (27)
- Indian Institute of Science - Bangalore - Índia (41)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (4)
- Laboratório Nacional de Energia e Geologia - Portugal (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (2)
- Massachusetts Institute of Technology (1)
- National Center for Biotechnology Information - NCBI (28)
- Publishing Network for Geoscientific & Environmental Data (3)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (153)
- Queensland University of Technology - ePrints Archive (76)
- RCAAP - Repositório Científico de Acesso Aberto de Portugal (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (2)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (104)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (5)
- School of Medicine, Washington University, United States (3)
- Universidad del Rosario, Colombia (4)
- Universidad Politécnica de Madrid (2)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (11)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (16)
- Université de Montréal, Canada (67)
- University of Connecticut - USA (1)
- University of Michigan (5)
- University of Queensland eSpace - Australia (17)
- University of Washington (1)
- WestminsterResearch - UK (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
This paper shows how a minimal neural network model of the cerebellum may be embedded within a sensory-neuro-muscular control system that mimics known anatomy and physiology. With this embedding, cerebellar learning promotes load compensation while also allowing both coactivation and reciprocal inhibition of sets of antagonist muscles. In particular, we show how synaptic long term depression guided by feedback from muscle stretch receptors can lead to trans-cerebellar gain changes that are load-compensating. It is argued that the same processes help to adaptively discover multi-joint synergies. Simulations of rapid single joint rotations under load illustrates design feasibility and stability.