1 resultado para active methods
em Boston University Digital Common
Filtro por publicador
- ABACUS. Repositorio de Producción Científica - Universidad Europea (1)
- Academic Archive On-line (Stockholm University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (9)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (1)
- Aquatic Commons (3)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (3)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (8)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (5)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (6)
- Bioline International (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (20)
- Boston University Digital Common (1)
- Brock University, Canada (1)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Cambridge University Engineering Department Publications Database (5)
- CentAUR: Central Archive University of Reading - UK (14)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (8)
- Cochin University of Science & Technology (CUSAT), India (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (5)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (4)
- Digital Archives@Colby (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (2)
- DigitalCommons@The Texas Medical Center (5)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (5)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Glasgow Theses Service (1)
- Helda - Digital Repository of University of Helsinki (1)
- Indian Institute of Science - Bangalore - Índia (9)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (3)
- Ministerio de Cultura, Spain (1)
- National Center for Biotechnology Information - NCBI (4)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Publishing Network for Geoscientific & Environmental Data (56)
- QSpace: Queen's University - Canada (2)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (20)
- Queensland University of Technology - ePrints Archive (620)
- Repositorio Academico Digital UANL (1)
- Repositório Científico da Universidade de Évora - Portugal (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional da Universidade de Brasília (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (23)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Universidad de Alicante (5)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (8)
- Universidade Complutense de Madrid (1)
- Universidade de Lisboa - Repositório Aberto (2)
- Universidade Federal de Uberlândia (1)
- Universidade Federal do Pará (4)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (2)
- Université de Lausanne, Switzerland (2)
- Université de Montréal, Canada (4)
- University of Queensland eSpace - Australia (12)
- University of Southampton, United Kingdom (1)
- University of Washington (3)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
We introduce Active Hidden Models (AHM) that utilize kernel methods traditionally associated with classification. We use AHMs to track deformable objects in video sequences by leveraging kernel projections. We introduce the "subset projection" method which improves the efficiency of our tracking approach by a factor of ten. We successfully tested our method on facial tracking with extreme head movements (including full 180-degree head rotation), facial expressions, and deformable objects. Given a kernel and a set of training observations, we derive unbiased estimates of the accuracy of the AHM tracker. Kernels are generally used in classification methods to make training data linearly separable. We prove that the optimal (minimum variance) tracking kernels are those that make the training observations linearly dependent.