19 resultados para World-wide-web
em Boston University Digital Common
Resumo:
We analyzed the logs of our departmental HTTP server http://cs-www.bu.edu as well as the logs of the more popular Rolling Stones HTTP server http://www.stones.com. These servers have very different purposes; the former caters primarily to local clients, whereas the latter caters exclusively to remote clients all over the world. In both cases, our analysis showed that remote HTTP accesses were confined to a very small subset of documents. Using a validated analytical model of server popularity and file access profiles, we show that by disseminating the most popular documents on servers (proxies) closer to the clients, network traffic could be reduced considerably, while server loads are balanced. We argue that this process could be generalized so as to provide for an automated demand-based duplication of documents. We believe that such server-based information dissemination protocols will be more effective at reducing both network bandwidth and document retrieval times than client-based caching protocols [2].
Resumo:
This report describes our attempt to add animation as another data type to be used on the World Wide Web. Our current network infrastructure, the Internet, is incapable of carrying video and audio streams for them to be used on the web for presentation purposes. In contrast, object-oriented animation proves to be efficient in terms of network resource requirements. We defined an animation model to support drawing-based and frame-based animation. We also extended the HyperText Markup Language in order to include this animation mode. BU-NCSA Mosanim, a modified version of the NCSA Mosaic for X(v2.5), is available to demonstrate the concept and potentials of animation in presentations an interactive game playing over the web.
Resumo:
Recently the notion of self-similarity has been shown to apply to wide-area and local-area network traffic. In this paper we examine the mechanisms that give rise to self-similar network traffic. We present an explanation for traffic self-similarity by using a particular subset of wide area traffic: traffic due to the World Wide Web (WWW). Using an extensive set of traces of actual user executions of NCSA Mosaic, reflecting over half a million requests for WWW documents, we show evidence that WWW traffic is self-similar. Then we show that the self-similarity in such traffic can be explained based on the underlying distributions of WWW document sizes, the effects of caching and user preference in file transfer, the effect of user "think time", and the superimposition of many such transfers in a local area network. To do this we rely on empirically measured distributions both from our traces and from data independently collected at over thirty WWW sites.
Resumo:
We propose the development of a world wide web image search engine that crawls the web collecting information about the images it finds, computes the appropriate image decompositions and indices, and stores this extracted information for searches based on image content. Indexing and searching images need not require solving the image understanding problem. Instead, the general approach should be to provide an arsenal of image decompositions and discriminants that can be precomputed for images. At search time, users can select a weighted subset of these decompositions to be used for computing image similarity measurements. While this approach avoids the search-time-dependent problem of labeling what is important in images, it still holds several important problems that require further research in the area of query by image content. We briefly explore some of these problems as they pertain to shape.
Resumo:
Server performance has become a crucial issue for improving the overall performance of the World-Wide Web. This paper describes Webmonitor, a tool for evaluating and understanding server performance, and presents new results for a realistic workload. Webmonitor measures activity and resource consumption, both within the kernel and in HTTP processes running in user space. Webmonitor is implemented using an efficient combination of sampling and event-driven techniques that exhibit low overhead. Our initial implementation is for the Apache World-Wide Web server running on the Linux operating system. We demonstrate the utility of Webmonitor by measuring and understanding the performance of a Pentium-based PC acting as a dedicated WWW server. Our workload uses a file size distribution with a heavy tail. This captures the fact that Web servers must concurrently handle some requests for large audio and video files, and a large number of requests for small documents, containing text or images. Our results show that in a Web server saturated by client requests, over 90% of the time spent handling HTTP requests is spent in the kernel. Furthermore, keeping TCP connections open, as required by TCP, causes a factor of 2-9 increase in the elapsed time required to service an HTTP request. Data gathered from Webmonitor provide insight into the causes of this performance penalty. Specifically, we observe a significant increase in resource consumption along three dimensions: the number of HTTP processes running at the same time, CPU utilization, and memory utilization. These results emphasize the important role of operating system and network protocol implementation in determining Web server performance.
Resumo:
ImageRover is a search by image content navigation tool for the world wide web. To gather images expediently, the image collection subsystem utilizes a distributed fleet of WWW robots running on different computers. The image robots gather information about the images they find, computing the appropriate image decompositions and indices, and store this extracted information in vector form for searches based on image content. At search time, users can iteratively guide the search through the selection of relevant examples. Search performance is made efficient through the use of an approximate, optimized k-d tree algorithm. The system employs a novel relevance feedback algorithm that selects the distance metrics appropriate for a particular query.
Resumo:
Some WWW image engines allow the user to form a query in terms of text keywords. To build the image index, keywords are extracted heuristically from HTML documents containing each image, and/or from the image URL and file headers. Unfortunately, text-based image engines have merely retro-fitted standard SQL database query methods, and it is difficult to include images cues within such a framework. On the other hand, visual statistics (e.g., color histograms) are often insufficient for helping users find desired images in a vast WWW index. By truly unifying textual and visual statistics, one would expect to get better results than either used separately. In this paper, we propose an approach that allows the combination of visual statistics with textual statistics in the vector space representation commonly used in query by image content systems. Text statistics are captured in vector form using latent semantic indexing (LSI). The LSI index for an HTML document is then associated with each of the images contained therein. Visual statistics (e.g., color, orientedness) are also computed for each image. The LSI and visual statistic vectors are then combined into a single index vector that can be used for content-based search of the resulting image database. By using an integrated approach, we are able to take advantage of possible statistical couplings between the topic of the document (latent semantic content) and the contents of images (visual statistics). This allows improved performance in conducting content-based search. This approach has been implemented in a WWW image search engine prototype.
Resumo:
One of the most vexing questions facing researchers interested in the World Wide Web is why users often experience long delays in document retrieval. The Internet's size, complexity, and continued growth make this a difficult question to answer. We describe the Wide Area Web Measurement project (WAWM) which uses an infrastructure distributed across the Internet to study Web performance. The infrastructure enables simultaneous measurements of Web client performance, network performance and Web server performance. The infrastructure uses a Web traffic generator to create representative workloads on servers, and both active and passive tools to measure performance characteristics. Initial results based on a prototype installation of the infrastructure are presented in this paper.
Resumo:
http://www.archive.org/details/worldwideevangel00unknuoft
Resumo:
The exploding demand for services like the World Wide Web reflects the potential that is presented by globally distributed information systems. The number of WWW servers world-wide has doubled every 3 to 5 months since 1993, outstripping even the growth of the Internet. At each of these self-managed sites, the Common Gateway Interface (CGI) and Hypertext Transfer Protocol (HTTP) already constitute a rudimentary basis for contributing local resources to remote collaborations. However, the Web has serious deficiencies that make it unsuited for use as a true medium for metacomputing --- the process of bringing hardware, software, and expertise from many geographically dispersed sources to bear on large scale problems. These deficiencies are, paradoxically, the direct result of the very simple design principles that enabled its exponential growth. There are many symptoms of the problems exhibited by the Web: disk and network resources are consumed extravagantly; information search and discovery are difficult; protocols are aimed at data movement rather than task migration, and ignore the potential for distributing computation. However, all of these can be seen as aspects of a single problem: as a distributed system for metacomputing, the Web offers unpredictable performance and unreliable results. The goal of our project is to use the Web as a medium (within either the global Internet or an enterprise intranet) for metacomputing in a reliable way with performance guarantees. We attack this problem one four levels: (1) Resource Management Services: Globally distributed computing allows novel approaches to the old problems of performance guarantees and reliability. Our first set of ideas involve setting up a family of real-time resource management models organized by the Web Computing Framework with a standard Resource Management Interface (RMI), a Resource Registry, a Task Registry, and resource management protocols to allow resource needs and availability information be collected and disseminated so that a family of algorithms with varying computational precision and accuracy of representations can be chosen to meet realtime and reliability constraints. (2) Middleware Services: Complementary to techniques for allocating and scheduling available resources to serve application needs under realtime and reliability constraints, the second set of ideas aim at reduce communication latency, traffic congestion, server work load, etc. We develop customizable middleware services to exploit application characteristics in traffic analysis to drive new server/browser design strategies (e.g., exploit self-similarity of Web traffic), derive document access patterns via multiserver cooperation, and use them in speculative prefetching, document caching, and aggressive replication to reduce server load and bandwidth requirements. (3) Communication Infrastructure: Finally, to achieve any guarantee of quality of service or performance, one must get at the network layer that can provide the basic guarantees of bandwidth, latency, and reliability. Therefore, the third area is a set of new techniques in network service and protocol designs. (4) Object-Oriented Web Computing Framework A useful resource management system must deal with job priority, fault-tolerance, quality of service, complex resources such as ATM channels, probabilistic models, etc., and models must be tailored to represent the best tradeoff for a particular setting. This requires a family of models, organized within an object-oriented framework, because no one-size-fits-all approach is appropriate. This presents a software engineering challenge requiring integration of solutions at all levels: algorithms, models, protocols, and profiling and monitoring tools. The framework captures the abstract class interfaces of the collection of cooperating components, but allows the concretization of each component to be driven by the requirements of a specific approach and environment.
Resumo:
Understanding the nature of the workloads and system demands created by users of the World Wide Web is crucial to properly designing and provisioning Web services. Previous measurements of Web client workloads have been shown to exhibit a number of characteristic features; however, it is not clear how those features may be changing with time. In this study we compare two measurements of Web client workloads separated in time by three years, both captured from the same computing facility at Boston University. The older dataset, obtained in 1995, is well-known in the research literature and has been the basis for a wide variety of studies. The newer dataset was captured in 1998 and is comparable in size to the older dataset. The new dataset has the drawback that the collection of users measured may no longer be representative of general Web users; however using it has the advantage that many comparisons can be drawn more clearly than would be possible using a new, different source of measurement. Our results fall into two categories. First we compare the statistical and distributional properties of Web requests across the two datasets. This serves to reinforce and deepen our understanding of the characteristic statistical properties of Web client requests. We find that the kinds of distributions that best describe document sizes have not changed between 1995 and 1998, although specific values of the distributional parameters are different. Second, we explore the question of how the observed differences in the properties of Web client requests, particularly the popularity and temporal locality properties, affect the potential for Web file caching in the network. We find that for the computing facility represented by our traces between 1995 and 1998, (1) the benefits of using size-based caching policies have diminished; and (2) the potential for caching requested files in the network has declined.
Resumo:
Reproduction of copy held by Special Collections, Bridewell Library, Perkins School of Theology, Southern Methodist University. Includes both DjVu and PDF files for download. Mode of access: World Wide Web.
Resumo:
With the increasing demand for document transfer services such as the World Wide Web comes a need for better resource management to reduce the latency of documents in these systems. To address this need, we analyze the potential for document caching at the application level in document transfer services. We have collected traces of actual executions of Mosaic, reflecting over half a million user requests for WWW documents. Using those traces, we study the tradeoffs between caching at three levels in the system, and the potential for use of application-level information in the caching system. Our traces show that while a high hit rate in terms of URLs is achievable, a much lower hit rate is possible in terms of bytes, because most profitably-cached documents are small. We consider the performance of caching when applied at the level of individual user sessions, at the level of individual hosts, and at the level of a collection of hosts on a single LAN. We show that the performance gain achievable by caching at the session level (which is straightforward to implement) is nearly all of that achievable at the LAN level (where caching is more difficult to implement). However, when resource requirements are considered, LAN level caching becomes much more desirable, since it can achieve a given level of caching performance using a much smaller amount of cache space. Finally, we consider the use of organizational boundary information as an example of the potential for use of application-level information in caching. Our results suggest that distinguishing between documents produced locally and those produced remotely can provide useful leverage in designing caching policies, because of differences in the potential for sharing these two document types among multiple users.
Resumo:
As distributed information services like the World Wide Web become increasingly popular on the Internet, problems of scale are clearly evident. A promising technique that addresses many of these problems is service (or document) replication. However, when a service is replicated, clients then need the additional ability to find a "good" provider of that service. In this paper we report on techniques for finding good service providers without a priori knowledge of server location or network topology. We consider the use of two principal metrics for measuring distance in the Internet: hops, and round-trip latency. We show that these two metrics yield very different results in practice. Surprisingly, we show data indicating that the number of hops between two hosts in the Internet is not strongly correlated to round-trip latency. Thus, the distance in hops between two hosts is not necessarily a good predictor of the expected latency of a document transfer. Instead of using known or measured distances in hops, we show that the extra cost at runtime incurred by dynamic latency measurement is well justified based on the resulting improved performance. In addition we show that selection based on dynamic latency measurement performs much better in practice that any static selection scheme. Finally, the difference between the distribution of hops and latencies is fundamental enough to suggest differences in algorithms for server replication. We show that conclusions drawn about service replication based on the distribution of hops need to be revised when the distribution of latencies is considered instead.
Resumo:
The World Wide Web (WWW or Web) is growing rapidly on the Internet. Web users want fast response time and easy access to a enormous variety of information across the world. Thus, performance is becoming a main issue in the Web. Fractals have been used to study fluctuating phenomena in many different disciplines, from the distribution of galaxies in astronomy to complex physiological control systems. The Web is also a complex, irregular, and random system. In this paper, we look at the document reference pattern at Internet Web servers and use fractal-based models to understand aspects (e.g. caching schemes) that affect the Web performance.