6 resultados para Web, Html 5, JavaScript, Dart, Structured Web Programming

em Boston University Digital Common


Relevância:

50.00% 50.00%

Publicador:

Resumo:

This report describes our attempt to add animation as another data type to be used on the World Wide Web. Our current network infrastructure, the Internet, is incapable of carrying video and audio streams for them to be used on the web for presentation purposes. In contrast, object-oriented animation proves to be efficient in terms of network resource requirements. We defined an animation model to support drawing-based and frame-based animation. We also extended the HyperText Markup Language in order to include this animation mode. BU-NCSA Mosanim, a modified version of the NCSA Mosaic for X(v2.5), is available to demonstrate the concept and potentials of animation in presentations an interactive game playing over the web.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The exploding demand for services like the World Wide Web reflects the potential that is presented by globally distributed information systems. The number of WWW servers world-wide has doubled every 3 to 5 months since 1993, outstripping even the growth of the Internet. At each of these self-managed sites, the Common Gateway Interface (CGI) and Hypertext Transfer Protocol (HTTP) already constitute a rudimentary basis for contributing local resources to remote collaborations. However, the Web has serious deficiencies that make it unsuited for use as a true medium for metacomputing --- the process of bringing hardware, software, and expertise from many geographically dispersed sources to bear on large scale problems. These deficiencies are, paradoxically, the direct result of the very simple design principles that enabled its exponential growth. There are many symptoms of the problems exhibited by the Web: disk and network resources are consumed extravagantly; information search and discovery are difficult; protocols are aimed at data movement rather than task migration, and ignore the potential for distributing computation. However, all of these can be seen as aspects of a single problem: as a distributed system for metacomputing, the Web offers unpredictable performance and unreliable results. The goal of our project is to use the Web as a medium (within either the global Internet or an enterprise intranet) for metacomputing in a reliable way with performance guarantees. We attack this problem one four levels: (1) Resource Management Services: Globally distributed computing allows novel approaches to the old problems of performance guarantees and reliability. Our first set of ideas involve setting up a family of real-time resource management models organized by the Web Computing Framework with a standard Resource Management Interface (RMI), a Resource Registry, a Task Registry, and resource management protocols to allow resource needs and availability information be collected and disseminated so that a family of algorithms with varying computational precision and accuracy of representations can be chosen to meet realtime and reliability constraints. (2) Middleware Services: Complementary to techniques for allocating and scheduling available resources to serve application needs under realtime and reliability constraints, the second set of ideas aim at reduce communication latency, traffic congestion, server work load, etc. We develop customizable middleware services to exploit application characteristics in traffic analysis to drive new server/browser design strategies (e.g., exploit self-similarity of Web traffic), derive document access patterns via multiserver cooperation, and use them in speculative prefetching, document caching, and aggressive replication to reduce server load and bandwidth requirements. (3) Communication Infrastructure: Finally, to achieve any guarantee of quality of service or performance, one must get at the network layer that can provide the basic guarantees of bandwidth, latency, and reliability. Therefore, the third area is a set of new techniques in network service and protocol designs. (4) Object-Oriented Web Computing Framework A useful resource management system must deal with job priority, fault-tolerance, quality of service, complex resources such as ATM channels, probabilistic models, etc., and models must be tailored to represent the best tradeoff for a particular setting. This requires a family of models, organized within an object-oriented framework, because no one-size-fits-all approach is appropriate. This presents a software engineering challenge requiring integration of solutions at all levels: algorithms, models, protocols, and profiling and monitoring tools. The framework captures the abstract class interfaces of the collection of cooperating components, but allows the concretization of each component to be driven by the requirements of a specific approach and environment.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

One role for workload generation is as a means for understanding how servers and networks respond to variation in load. This enables management and capacity planning based on current and projected usage. This paper applies a number of observations of Web server usage to create a realistic Web workload generation tool which mimics a set of real users accessing a server. The tool, called Surge (Scalable URL Reference Generator) generates references matching empirical measurements of 1) server file size distribution; 2) request size distribution; 3) relative file popularity; 4) embedded file references; 5) temporal locality of reference; and 6) idle periods of individual users. This paper reviews the essential elements required in the generation of a representative Web workload. It also addresses the technical challenges to satisfying this large set of simultaneous constraints on the properties of the reference stream, the solutions we adopted, and their associated accuracy. Finally, we present evidence that Surge exercises servers in a manner significantly different from other Web server benchmarks.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

There has been considerable work done in the study of Web reference streams: sequences of requests for Web objects. In particular, many studies have looked at the locality properties of such streams, because of the impact of locality on the design and performance of caching and prefetching systems. However, a general framework for understanding why reference streams exhibit given locality properties has not yet emerged. In this work we take a first step in this direction, based on viewing the Web as a set of reference streams that are transformed by Web components (clients, servers, and intermediaries). We propose a graph-based framework for describing this collection of streams and components. We identify three basic stream transformations that occur at nodes of the graph: aggregation, disaggregation and filtering, and we show how these transformations can be used to abstract the effects of different Web components on their associated reference streams. This view allows a structured approach to the analysis of why reference streams show given properties at different points in the Web. Applying this approach to the study of locality requires good metrics for locality. These metrics must meet three criteria: 1) they must accurately capture temporal locality; 2) they must be independent of trace artifacts such as trace length; and 3) they must not involve manual procedures or model-based assumptions. We describe two metrics meeting these criteria that each capture a different kind of temporal locality in reference streams. The popularity component of temporal locality is captured by entropy, while the correlation component is captured by interreference coefficient of variation. We argue that these metrics are more natural and more useful than previously proposed metrics for temporal locality. We use this framework to analyze a diverse set of Web reference traces. We find that this framework can shed light on how and why locality properties vary across different locations in the Web topology. For example, we find that filtering and aggregation have opposing effects on the popularity component of the temporal locality, which helps to explain why multilevel caching can be effective in the Web. Furthermore, we find that all transformations tend to diminish the correlation component of temporal locality, which has implications for the utility of different cache replacement policies at different points in the Web.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Some WWW image engines allow the user to form a query in terms of text keywords. To build the image index, keywords are extracted heuristically from HTML documents containing each image, and/or from the image URL and file headers. Unfortunately, text-based image engines have merely retro-fitted standard SQL database query methods, and it is difficult to include images cues within such a framework. On the other hand, visual statistics (e.g., color histograms) are often insufficient for helping users find desired images in a vast WWW index. By truly unifying textual and visual statistics, one would expect to get better results than either used separately. In this paper, we propose an approach that allows the combination of visual statistics with textual statistics in the vector space representation commonly used in query by image content systems. Text statistics are captured in vector form using latent semantic indexing (LSI). The LSI index for an HTML document is then associated with each of the images contained therein. Visual statistics (e.g., color, orientedness) are also computed for each image. The LSI and visual statistic vectors are then combined into a single index vector that can be used for content-based search of the resulting image database. By using an integrated approach, we are able to take advantage of possible statistical couplings between the topic of the document (latent semantic content) and the contents of images (visual statistics). This allows improved performance in conducting content-based search. This approach has been implemented in a WWW image search engine prototype.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

We present a highly accurate method for classifying web pages based on link percentage, which is the percentage of text characters that are parts of links normalized by the number of all text characters on a web page. K-means clustering is used to create unique thresholds to differentiate index pages and article pages on individual web sites. Index pages contain mostly links to articles and other indices, while article pages contain mostly text. We also present a novel link grouping algorithm using agglomerative hierarchical clustering that groups links in the same spatial neighborhood together while preserving link structure. Grouping allows users with severe disabilities to use a scan-based mechanism to tab through a web page and select items. In experiments, we saw up to a 40-fold reduction in the number of commands needed to click on a link with a scan-based interface, which shows that we can vastly improve the rate of communication for users with disabilities. We used web page classification and link grouping to alter web page display on an accessible web browser that we developed to make a usable browsing interface for users with disabilities. Our classification method consistently outperformed a baseline classifier even when using minimal data to generate article and index clusters, and achieved classification accuracy of 94.0% on web sites with well-formed or slightly malformed HTML, compared with 80.1% accuracy for the baseline classifier.