6 resultados para Weak Alignment
em Boston University Digital Common
Resumo:
Traditionally, slotted communication protocols have employed guard times to delineate and align slots. These guard times may expand the slot duration significantly, especially when clocks are allowed to drift for longer time to reduce clock synchronization overhead. Recently, a new class of lightweight protocols for statistical estimation in wireless sensor networks have been proposed. This new class requires very short transmission durations (jam signals), thus the traditional approach of using guard times would impose significant overhead. We propose a new, more efficient algorithm to align slots. Based on geometrical properties of space, we prove that our approach bounds the slot duration by only a constant factor of what is needed. Furthermore, we show by simulation that this bound is loose and an even smaller slot duration is required, making our approach even more efficient.
Resumo:
Locating hands in sign language video is challenging due to a number of factors. Hand appearance varies widely across signers due to anthropometric variations and varying levels of signer proficiency. Video can be captured under varying illumination, camera resolutions, and levels of scene clutter, e.g., high-res video captured in a studio vs. low-res video gathered by a web cam in a user’s home. Moreover, the signers’ clothing varies, e.g., skin-toned clothing vs. contrasting clothing, short-sleeved vs. long-sleeved shirts, etc. In this work, the hand detection problem is addressed in an appearance matching framework. The Histogram of Oriented Gradient (HOG) based matching score function is reformulated to allow non-rigid alignment between pairs of images to account for hand shape variation. The resulting alignment score is used within a Support Vector Machine hand/not-hand classifier for hand detection. The new matching score function yields improved performance (in ROC area and hand detection rate) over the Vocabulary Guided Pyramid Match Kernel (VGPMK) and the traditional, rigid HOG distance on American Sign Language video gestured by expert signers. The proposed match score function is computationally less expensive (for training and testing), has fewer parameters and is less sensitive to parameter settings than VGPMK. The proposed detector works well on test sequences from an inexpert signer in a non-studio setting with cluttered background.
Resumo:
Nearest neighbor classifiers are simple to implement, yet they can model complex non-parametric distributions, and provide state-of-the-art recognition accuracy in OCR databases. At the same time, they may be too slow for practical character recognition, especially when they rely on similarity measures that require computationally expensive pairwise alignments between characters. This paper proposes an efficient method for computing an approximate similarity score between two characters based on their exact alignment to a small number of prototypes. The proposed method is applied to both online and offline character recognition, where similarity is based on widely used and computationally expensive alignment methods, i.e., Dynamic Time Warping and the Hungarian method respectively. In both cases significant recognition speedup is obtained at the expense of only a minor increase in recognition error.
Resumo:
Weak references are references that do not prevent the object they point to from being garbage collected. Most realistic languages, including Java, SML/NJ, and OCaml to name a few, have some facility for programming with weak references. Weak references are used in implementing idioms like memoizing functions and hash-consing in order to avoid potential memory leaks. However, the semantics of weak references in many languages are not clearly specified. Without a formal semantics for weak references it becomes impossible to prove the correctness of implementations making use of this feature. Previous work by Hallett and Kfoury extends λgc, a language for modeling garbage collection, to λweak, a similar language with weak references. Using this previously formalized semantics for weak references, we consider two issues related to well-behavedness of programs. Firstly, we provide a new, simpler proof of the well-behavedness of the syntactically restricted fragment of λweak defined previously. Secondly, we give a natural semantic criterion for well-behavedness much broader than the syntactic restriction, which is useful as principle for programming with weak references. Furthermore we extend the result, proved in previously of λgc, which allows one to use type-inference to collect some reachable objects that are never used. We prove that this result holds of our language, and we extend this result to allow the collection of weakly-referenced reachable garbage without incurring the computational overhead sometimes associated with collecting weak bindings (e.g. the need to recompute a memoized function). Lastly we use extend the semantic framework to model the key/value weak references found in Haskell and we prove the Haskell is semantics equivalent to a simpler semantics due to the lack of side-effects in our language.
Resumo:
A weak reference is a reference to an object that is not followed by the pointer tracer when garbage collection is called. That is, a weak reference cannot prevent the object it references from being garbage collected. Weak references remain a troublesome programming feature largely because there is not an accepted, precise semantics that describes their behavior (in fact, we are not aware of any formalization of their semantics). The trouble is that weak references allow reachable objects to be garbage collected, therefore allowing garbage collection to influence the result of a program. Despite this difficulty, weak references continue to be used in practice for reasons related to efficient storage management, and are included in many popular programming languages (Standard ML, Haskell, OCaml, and Java). We give a formal semantics for a calculus called λweak that includes weak references and is derived from Morrisett, Felleisen, and Harper’s λgc. λgc formalizes the notion of garbage collection by means of a rewrite rule. Such a formalization is required to precisely characterize the semantics of weak references. However, the inclusion of a garbage-collection rewrite-rule in a language with weak references introduces non-deterministic evaluation, even if the parameter-passing mechanism is deterministic (call-by-value in our case). This raises the question of confluence for our rewrite system. We discuss natural restrictions under which our rewrite system is confluent, thus guaranteeing uniqueness of program result. We define conditions that allow other garbage collection algorithms to co-exist with our semantics of weak references. We also introduce a polymorphic type system to prove the absence of erroneous program behavior (i.e., the absence of “stuck evaluation”) and a corresponding type inference algorithm. We prove the type system sound and the inference algorithm sound and complete.
Resumo:
Weak references provide the programmer with limited control over the process of memory management. By using them, a programmer can make decisions based on previous actions that are taken by the garbage collector. Although this is often helpful, the outcome of a program using weak references is less predictable due to the nondeterminism they introduce in program evaluation. It is therefore desirable to have a framework of formal tools to reason about weak references and programs that use them. We present several calculi that formalize various aspects of weak references, inspired by their implementation in Java. We provide a calculus to model multiple levels of non-strong references, where a different garbage collection policy is applied to each level. We consider different collection policies such as eager collection and lazy collection. Similar to the way they are implemented in Java, we give the semantics of eager collection to weak references and the semantics of lazy collection to soft references. Moreover, we condition garbage collection on the availability of time and space resources. While time constraints are used in order to restrict garbage collection, space constraints are used in order to trigger it. Finalizers are a problematic feature in Java, especially when they interact with weak references. We provide a calculus to model finalizer evaluation. Since finalizers have little meaning in a language without side-effect, we introduce a limited form of side effect into the calculus. We discuss determinism and the separate notion of uniqueness of (evaluation) outcome. We show that in our calculus, finalizer evaluation does not affect uniqueness of outcome.