3 resultados para WIDE-RANGE CURRENT MEASUREMENT
em Boston University Digital Common
Resumo:
The development and deployment of distributed network-aware applications and services over the Internet require the ability to compile and maintain a model of the underlying network resources with respect to (one or more) characteristic properties of interest. To be manageable, such models must be compact, and must enable a representation of properties along temporal, spatial, and measurement resolution dimensions. In this paper, we propose a general framework for the construction of such metric-induced models using end-to-end measurements. We instantiate our approach using one such property, packet loss rates, and present an analytical framework for the characterization of Internet loss topologies. From the perspective of a server the loss topology is a logical tree rooted at the server with clients at its leaves, in which edges represent lossy paths between a pair of internal network nodes. We show how end-to-end unicast packet probing techniques could b e used to (1) infer a loss topology and (2) identify the loss rates of links in an existing loss topology. Correct, efficient inference of loss topology information enables new techniques for aggregate congestion control, QoS admission control, connection scheduling and mirror site selection. We report on simulation, implementation, and Internet deployment results that show the effectiveness of our approach and its robustness in terms of its accuracy and convergence over a wide range of network conditions.
Resumo:
One of the most vexing questions facing researchers interested in the World Wide Web is why users often experience long delays in document retrieval. The Internet's size, complexity, and continued growth make this a difficult question to answer. We describe the Wide Area Web Measurement project (WAWM) which uses an infrastructure distributed across the Internet to study Web performance. The infrastructure enables simultaneous measurements of Web client performance, network performance and Web server performance. The infrastructure uses a Web traffic generator to create representative workloads on servers, and both active and passive tools to measure performance characteristics. Initial results based on a prototype installation of the infrastructure are presented in this paper.
Resumo:
Current Internet transport protocols make end-to-end measurements and maintain per-connection state to regulate the use of shared network resources. When a number of such connections share a common endpoint, that endpoint has the opportunity to correlate these end-to-end measurements to better diagnose and control the use of shared resources. A valuable characterization of such shared resources is the "loss topology". From the perspective of a server with concurrent connections to multiple clients, the loss topology is a logical tree rooted at the server in which edges represent lossy paths between a pair of internal network nodes. We develop an end-to-end unicast packet probing technique and an associated analytical framework to: (1) infer loss topologies, (2) identify loss rates of links in an existing loss topology, and (3) augment a topology to incorporate the arrival of a new connection. Correct, efficient inference of loss topology information enables new techniques for aggregate congestion control, QoS admission control, connection scheduling and mirror site selection. Our extensive simulation results demonstrate that our approach is robust in terms of its accuracy and convergence over a wide range of network conditions.