6 resultados para Vehicle rear end.

em Boston University Digital Common


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current low-level networking abstractions on modern operating systems are commonly implemented in the kernel to provide sufficient performance for general purpose applications. However, it is desirable for high performance applications to have more control over the networking subsystem to support optimizations for their specific needs. One approach is to allow networking services to be implemented at user-level. Unfortunately, this typically incurs costs due to scheduling overheads and unnecessary data copying via the kernel. In this paper, we describe a method to implement efficient application-specific network service extensions at user-level, that removes the cost of scheduling and provides protected access to lower-level system abstractions. We present a networking implementation that, with minor modifications to the Linux kernel, passes data between "sandboxed" extensions and the Ethernet device without copying or processing in the kernel. Using this mechanism, we put a customizable networking stack into a user-level sandbox and show how it can be used to efficiently process and forward data via proxies, or intermediate hosts, in the communication path of high performance data streams. Unlike other user-level networking implementations, our method makes no special hardware requirements to avoid unnecessary data copies. Results show that we achieve a substantial increase in throughput over comparable user-space methods using our networking stack implementation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ERRATA: We present corrections to Fact 3 and (as a consequence) to Lemma 1 of BUCS Technical Report BUCS-TR-2000-013 (also published in IEEE INCP'2000)[1]. These corrections result in slight changes to the formulae used for the identifications of shared losses, which we quantify.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent work has shown the prevalence of small-world phenomena [28] in many networks. Small-world graphs exhibit a high degree of clustering, yet have typically short path lengths between arbitrary vertices. Internet AS-level graphs have been shown to exhibit small-world behaviors [9]. In this paper, we show that both Internet AS-level and router-level graphs exhibit small-world behavior. We attribute such behavior to two possible causes–namely the high variability of vertex degree distributions (which were found to follow approximately a power law [15]) and the preference of vertices to have local connections. We show that both factors contribute with different relative degrees to the small-world behavior of AS-level and router-level topologies. Our findings underscore the inefficacy of the Barabasi-Albert model [6] in explaining the growth process of the Internet, and provide a basis for more promising approaches to the development of Internet topology generators. We present such a generator and show the resemblance of the synthetic graphs it generates to real Internet AS-level and router-level graphs. Using these graphs, we have examined how small-world behaviors affect the scalability of end-system multicast. Our findings indicate that lower variability of vertex degree and stronger preference for local connectivity in small-world graphs results in slower network neighborhood expansion, and in longer average path length between two arbitrary vertices, which in turn results in better scaling of end system multicast.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

End-to-End differentiation between wireless and congestion loss can equip TCP control so it operates effectively in a hybrid wired/wireless environment. Our approach integrates two techniques: packet loss pairs (PLP) and Hidden Markov Modeling (HMM). A packet loss pair is formed by two back-to-back packets, where one packet is lost while the second packet is successfully received. The purpose is for the second packet to carry the state of the network path, namely the round trip time (RTT), at the time the other packet is lost. Under realistic conditions, PLP provides strong differentiation between congestion and wireless type of loss based on distinguishable RTT distributions. An HMM is then trained so observed RTTs can be mapped to model states that represent either congestion loss or wireless loss. Extensive simulations confirm the accuracy of our HMM-based technique in classifying the cause of a packet loss. We also show the superiority of our technique over the Vegas predictor, which was recently found to perform best and which exemplifies other existing loss labeling techniques.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current Internet transport protocols make end-to-end measurements and maintain per-connection state to regulate the use of shared network resources. When two or more such connections share a common endpoint, there is an opportunity to correlate the end-to-end measurements made by these protocols to better diagnose and control the use of shared resources. We develop packet probing techniques to determine whether a pair of connections experience shared congestion. Correct, efficient diagnoses could enable new techniques for aggregate congestion control, QoS admission control, connection scheduling and mirror site selection. Our extensive simulation results demonstrate that the conditional (Bayesian) probing approach we employ provides superior accuracy, converges faster, and tolerates a wider range of network conditions than recently proposed memoryless (Markovian) probing approaches for addressing this opportunity.