5 resultados para User-centered system design
em Boston University Digital Common
Resumo:
A method called "SymbolDesign" is proposed that can be used to design user-centered interfaces for pen-based input devices. It can also extend the functionality of pointer input devices such as the traditional computer mouse or the Camera Mouse, a camera-based computer interface. Users can create their own interfaces by choosing single-stroke movement patterns that are convenient to draw with the selected input device and by mapping them to a desired set of commands. A pattern could be the trace of a moving finger detected with the Camera Mouse or a symbol drawn with an optical pen. The core of the SymbolDesign system is a dynamically created classifier, in the current implementation an artificial neural network. The architecture of the neural network automatically adjusts according to the complexity of the classification task. In experiments, subjects used the SymbolDesign method to design and test the interfaces they created, for example, to browse the web. The experiments demonstrated good recognition accuracy and responsiveness of the user interfaces. The method provided an easily-designed and easily-used computer input mechanism for people without physical limitations, and, with some modifications, has the potential to become a computer access tool for people with severe paralysis.
Resumo:
Reliability and availability have long been considered twin system properties that could be enhanced by distribution. Paradoxically, the traditional definitions of these properties do not recognize the positive impact of recovery as distinct from simple repair and restart on reliability, nor the negative effect of recovery, and of internetworking of clients and servers, on availability. As a result of employing the standard definitions, reliability would tend to be underestimated, and availability overestimated. We offer revised definitions of these two critical metrics, which we call service reliability and service availability, that improve the match between their formal expression, and intuitive meaning. A fortuitous advantage of our approach is that the product of our two metrics yields a highly meaningful figure of merit for the overall dependability of a system. But techniques that enhance system dependability exact a performance cost, so we conclude with a cohesive definition of performability that rewards the system for performance that is delivered to its client applications, after discounting the following consequences of failure: service denial and interruption, lost work, and recovery cost.
Resumo:
As the World Wide Web (Web) is increasingly adopted as the infrastructure for large-scale distributed information systems, issues of performance modeling become ever more critical. In particular, locality of reference is an important property in the performance modeling of distributed information systems. In the case of the Web, understanding the nature of reference locality will help improve the design of middleware, such as caching, prefetching, and document dissemination systems. For example, good measurements of reference locality would allow us to generate synthetic reference streams with accurate performance characteristics, would allow us to compare empirically measured streams to explain differences, and would allow us to predict expected performance for system design and capacity planning. In this paper we propose models for both temporal and spatial locality of reference in streams of requests arriving at Web servers. We show that simple models based only on document popularity (likelihood of reference) are insufficient for capturing either temporal or spatial locality. Instead, we rely on an equivalent, but numerical, representation of a reference stream: a stack distance trace. We show that temporal locality can be characterized by the marginal distribution of the stack distance trace, and we propose models for typical distributions and compare their cache performance to our traces. We also show that spatial locality in a reference stream can be characterized using the notion of self-similarity. Self-similarity describes long-range correlations in the dataset, which is a property that previous researchers have found hard to incorporate into synthetic reference strings. We show that stack distance strings appear to be strongly self-similar, and we provide measurements of the degree of self-similarity in our traces. Finally, we discuss methods for generating synthetic Web traces that exhibit the properties of temporal and spatial locality that we measured in our data.
Resumo:
Temporal structure in skilled, fluent action exists at several nested levels. At the largest scale considered here, short sequences of actions that are planned collectively in prefrontal cortex appear to be queued for performance by a cyclic competitive process that operates in concert with a parallel analog representation that implicitly specifies the relative priority of elements of the sequence. At an intermediate scale, single acts, like reaching to grasp, depend on coordinated scaling of the rates at which many muscles shorten or lengthen in parallel. To ensure success of acts such as catching an approaching ball, such parallel rate scaling, which appears to be one function of the basal ganglia, must be coupled to perceptual variables, such as time-to-contact. At a fine scale, within each act, desired rate scaling can be realized only if precisely timed muscle activations first accelerate and then decelerate the limbs, to ensure that muscle length changes do not under- or over-shoot the amounts needed for the precise acts. Each context of action may require a much different timed muscle activation pattern than similar contexts. Because context differences that require different treatment cannot be known in advance, a formidable adaptive engine-the cerebellum-is needed to amplify differences within, and continuosly search, a vast parallel signal flow, in order to discover contextual "leading indicators" of when to generate distinctive parallel patterns of analog signals. From some parts of the cerebellum, such signals controls muscles. But a recent model shows how the lateral cerebellum, such signals control muscles. But a recent model shows how the lateral cerebellum may serve the competitive queuing system (in frontal cortex) as a repository of quickly accessed long-term sequence memories. Thus different parts of the cerebellum may use the same adaptive engine system design to serve the lowest and the highest of the three levels of temporal structure treated. If so, no one-to-one mapping exists between levels of temporal structure and major parts of the brain. Finally, recent data cast doubt on network-delay models of cerebellar adaptive timing.
Resumo:
This article describes further evidence for a new neural network theory of biological motion perception that is called a Motion Boundary Contour System. This theory clarifies why parallel streams Vl-> V2 and Vl-> MT exist for static form and motion form processing among the areas Vl, V2, and MT of visual cortex. The Motion Boundary Contour System consists of several parallel copies, such that each copy is activated by a different range of receptive field sizes. Each copy is further subdivided into two hierarchically organized subsystems: a Motion Oriented Contrast Filter, or MOC Filter, for preprocessing moving images; and a Cooperative-Competitive Feedback Loop, or CC Loop, for generating emergent boundary segmentations of the filtered signals. The present article uses the MOC Filter to explain a variety of classical and recent data about short-range and long-range apparent motion percepts that have not yet been explained by alternative models. These data include split motion; reverse-contrast gamma motion; delta motion; visual inertia; group motion in response to a reverse-contrast Ternus display at short interstimulus intervals; speed-up of motion velocity as interfiash distance increases or flash duration decreases; dependence of the transition from element motion to group motion on stimulus duration and size; various classical dependencies between flash duration, spatial separation, interstimulus interval, and motion threshold known as Korte's Laws; and dependence of motion strength on stimulus orientation and spatial frequency. These results supplement earlier explanations by the model of apparent motion data that other models have not explained; a recent proposed solution of the global aperture problem, including explanations of motion capture and induced motion; an explanation of how parallel cortical systems for static form perception and motion form perception may develop, including a demonstration that these parallel systems are variations on a common cortical design; an explanation of why the geometries of static form and motion form differ, in particular why opposite orientations differ by 90°, whereas opposite directions differ by 180°, and why a cortical stream Vl -> V2 -> MT is needed; and a summary of how the main properties of other motion perception models can be assimilated into different parts of the Motion Boundary Contour System design.