12 resultados para User interface style
em Boston University Digital Common
Resumo:
DSpace is an open source software platform that enables organizations to: - Capture and describe digital material using a submission workflow module, or a variety of programmatic ingest options - Distribute an organization's digital assets over the web through a search and retrieval system - Preserve digital assets over the long term This system documentation includes a functional overview of the system, which is a good introduction to the capabilities of the system, and should be readable by nontechnical personnel. Everyone should read this section first because it introduces some terminology used throughout the rest of the documentation. For people actually running a DSpace service, there is an installation guide, and sections on configuration and the directory structure. Note that as of DSpace 1.2, the administration user interface guide is now on-line help available from within the DSpace system. Finally, for those interested in the details of how DSpace works, and those potentially interested in modifying the code for their own purposes, there is a detailed architecture and design section.
Resumo:
Poster is based on the following paper: C. Kwan and M. Betke. Camera Canvas: Image editing software for people with disabilities. In Proceedings of the 14th International Conference on Human Computer Interaction (HCI International 2011), Orlando, Florida, July 2011.
Resumo:
Numerous problems exist that can be modeled as traffic through a network in which constraints exist to regulate flow. Vehicular road travel, computer networks, and cloud based resource distribution, among others all have natural representations in this manner. As these networks grow in size and/or complexity, analysis and certification of the safety invariants becomes increasingly costly. The NetSketch formalism introduces a lightweight verification framework that allows for greater scalability than traditional analysis methods. The NetSketch tool was developed to provide the power of this formalism in an easy to use and intuitive user interface.
Resumo:
Quadsim is an intermediate code simulator. It allows you to "run" programs that your compiler generates in intermediate code format. Its user interface is similar to most debuggers in that you can step through your program, instruction by instruction, set breakpoints, examine variable values, and so on. The intermediate code format used by Quadsim is that described in [Aho 86]. If your compiler generates intermediate code in this format, you will be able to take intermediate-code files generated by your compiler, load them into the simulator, and watch them "run." You are provided with functions that hide the internal representation of intermediate code. You can use these functions within your compiler to generate intermediate code files that can be read by the simulator. Quadsim was inspired and greatly influenced by [Aho 86]. The material in chapter 8 (Intermediate Code Generation) of [Aho 86] should be considered background material for users of Quadsim.
Resumo:
The ML programming language restricts type polymorphism to occur only in the "let-in" construct and requires every occurrence of a formal parameter of a function (a lambda abstraction) to have the same type. Milner in 1978 refers to this restriction (which was adopted to help ML achieve automatic type inference) as a serious limitation. We show that this restriction can be relaxed enough to allow universal polymorphic abstraction without losing automatic type inference. This extension is equivalent to the rank-2 fragment of system F. We precisely characterize the additional program phrases (lambda terms) that can be typed with this extension and we describe typing anomalies both before and after the extension. We discuss how macros may be used to gain some of the power of rank-3 types without losing automatic type inference. We also discuss user-interface problems in how to inform the programmer of the possible types a program phrase may have.
Resumo:
We introduce "BU-MIA," a Medical Image Analysis system that integrates various advanced chest image analysis methods for detection, estimation, segmentation, and registration. BU-MIA evaluates repeated computed tomography (CT) scans of the same patient to facilitate identification and evaluation of pulmonary nodules for interval growth. It provides a user-friendly graphical user interface with a number of interaction tools for development, evaluation, and validation of chest image analysis methods. The structures that BU-MIA processes include the thorax, lungs, and trachea, pulmonary structures, such as lobes, fissures, nodules, and vessels, and bones, such as sternum, vertebrae, and ribs.
Resumo:
ImageRover is a search by image content navigation tool for the world wide web. The staggering size of the WWW dictates certain strategies and algorithms for image collection, digestion, indexing, and user interface. This paper describes two key components of the ImageRover strategy: image digestion and relevance feedback. Image digestion occurs during image collection; robots digest the images they find, computing image decompositions and indices, and storing this extracted information in vector form for searches based on image content. Relevance feedback occurs during index search; users can iteratively guide the search through the selection of relevant examples. ImageRover employs a novel relevance feedback algorithm to determine the weighted combination of image similarity metrics appropriate for a particular query. ImageRover is available and running on the web site.
Resumo:
NetSketch is a tool that enables the specification of network-flow applications and the certification of desirable safety properties imposed thereon. NetSketch is conceived to assist system integrators in two types of activities: modeling and design. As a modeling tool, it enables the abstraction of an existing system so as to retain sufficient enough details to enable future analysis of safety properties. As a design tool, NetSketch enables the exploration of alternative safe designs as well as the identification of minimal requirements for outsourced subsystems. NetSketch embodies a lightweight formal verification philosophy, whereby the power (but not the heavy machinery) of a rigorous formalism is made accessible to users via a friendly interface. NetSketch does so by exposing tradeoffs between exactness of analysis and scalability, and by combining traditional whole-system analysis with a more flexible compositional analysis approach based on a strongly-typed, Domain-Specific Language (DSL) to specify network configurations at various levels of sketchiness along with invariants that need to be enforced thereupon. In this paper, we overview NetSketch, highlight its salient features, and illustrate how it could be used in applications, including the management/shaping of traffic flows in a vehicular network (as a proxy for CPS applications) and in a streaming media network (as a proxy for Internet applications). In a companion paper, we define the formal system underlying the operation of NetSketch, in particular the DSL behind NetSketch's user-interface when used in "sketch mode", and prove its soundness relative to appropriately-defined notions of validity.
Resumo:
NetSketch is a tool for the specification of constrained-flow applications and the certification of desirable safety properties imposed thereon. NetSketch is conceived to assist system integrators in two types of activities: modeling and design. As a modeling tool, it enables the abstraction of an existing system while retaining sufficient information about it to carry out future analysis of safety properties. As a design tool, NetSketch enables the exploration of alternative safe designs as well as the identification of minimal requirements for outsourced subsystems. NetSketch embodies a lightweight formal verification philosophy, whereby the power (but not the heavy machinery) of a rigorous formalism is made accessible to users via a friendly interface. NetSketch does so by exposing tradeoffs between exactness of analysis and scalability, and by combining traditional whole-system analysis with a more flexible compositional analysis. The compositional analysis is based on a strongly-typed Domain-Specific Language (DSL) for describing and reasoning about constrained-flow networks at various levels of sketchiness along with invariants that need to be enforced thereupon. In this paper, we define the formal system underlying the operation of NetSketch, in particular the DSL behind NetSketch's user-interface when used in "sketch mode", and prove its soundness relative to appropriately-defined notions of validity. In a companion paper [6], we overview NetSketch, highlight its salient features, and illustrate how it could be used in two applications: the management/shaping of traffic flows in a vehicular network (as a proxy for CPS applications) and in a streaming media network (as a proxy for Internet applications).
Resumo:
Effective engineering of the Internet is predicated upon a detailed understanding of issues such as the large-scale structure of its underlying physical topology, the manner in which it evolves over time, and the way in which its constituent components contribute to its overall function. Unfortunately, developing a deep understanding of these issues has proven to be a challenging task, since it in turn involves solving difficult problems such as mapping the actual topology, characterizing it, and developing models that capture its emergent behavior. Consequently, even though there are a number of topology models, it is an open question as to how representative the topologies they generate are of the actual Internet. Our goal is to produce a topology generation framework which improves the state of the art and is based on design principles which include representativeness, inclusiveness, and interoperability. Representativeness leads to synthetic topologies that accurately reflect many aspects of the actual Internet topology (e.g. hierarchical structure, degree distribution, etc.). Inclusiveness combines the strengths of as many generation models as possible in a single generation tool. Interoperability provides interfaces to widely-used simulation and visualization applications such as ns and SSF. We call such a tool a universal topology generator. In this paper we discuss the design, implementation and usage of the BRITE universal topology generation tool that we have built. We also describe the BRITE Analysis Engine, BRIANA, which is an independent piece of software designed and built upon BRITE design goals of flexibility and extensibility. The purpose of BRIANA is to act as a repository of analysis routines along with a user–friendly interface that allows its use on different topology formats.
Resumo:
A method called "SymbolDesign" is proposed that can be used to design user-centered interfaces for pen-based input devices. It can also extend the functionality of pointer input devices such as the traditional computer mouse or the Camera Mouse, a camera-based computer interface. Users can create their own interfaces by choosing single-stroke movement patterns that are convenient to draw with the selected input device and by mapping them to a desired set of commands. A pattern could be the trace of a moving finger detected with the Camera Mouse or a symbol drawn with an optical pen. The core of the SymbolDesign system is a dynamically created classifier, in the current implementation an artificial neural network. The architecture of the neural network automatically adjusts according to the complexity of the classification task. In experiments, subjects used the SymbolDesign method to design and test the interfaces they created, for example, to browse the web. The experiments demonstrated good recognition accuracy and responsiveness of the user interfaces. The method provided an easily-designed and easily-used computer input mechanism for people without physical limitations, and, with some modifications, has the potential to become a computer access tool for people with severe paralysis.
Resumo:
The purpose of this project is the creation of a graphical "programming" interface for a sensor network tasking language called STEP. The graphical interface allows the user to specify a program execution graphically from an extensible pallet of functionalities and save the results as a properly formatted STEP file. Moreover, the software is able to load a file in STEP format and convert it into the corresponding graphical representation. During both phases a type-checker is running on the background to ensure that both the graphical representation and the STEP file are syntactically correct. This project has been motivated by the Sensorium project at Boston University. In this technical report we present the basic features of the software, the process that has been followed during the design and implementation. Finally, we describe the approach used to test and validate our software.