18 resultados para University admission

em Boston University Digital Common


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose and evaluate an admission control paradigm for RTDBS, in which a transaction is submitted to the system as a pair of processes: a primary task, and a recovery block. The execution requirements of the primary task are not known a priori, whereas those of the recovery block are known a priori. Upon the submission of a transaction, an Admission Control Mechanism is employed to decide whether to admit or reject that transaction. Once admitted, a transaction is guaranteed to finish executing before its deadline. A transaction is considered to have finished executing if exactly one of two things occur: Either its primary task is completed (successful commitment), or its recovery block is completed (safe termination). Committed transactions bring a profit to the system, whereas a terminated transaction brings no profit. The goal of the admission control and scheduling protocols (e.g., concurrency control, I/O scheduling, memory management) employed in the system is to maximize system profit. We describe a number of admission control strategies and contrast (through simulations) their relative performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We propose and evaluate admission control mechanisms for ACCORD, an Admission Control and Capacity Overload management Real-time Database framework-an architecture and a transaction model-for hard deadline RTDB systems. The system architecture consists of admission control and scheduling components which provide early notification of failure to submitted transactions that are deemed not valuable or incapable of completing on time. In particular, our Concurrency Admission Control Manager (CACM) ensures that transactions which are admitted do not overburden the system by requiring a level of concurrency that is not sustainable. The transaction model consists of two components: a primary task and a compensating task. The execution requirements of the primary task are not known a priori, whereas those of the compensating task are known a priori. Upon the submission of a transaction, the Admission Control Mechanisms are employed to decide whether to admit or reject that transaction. Once admitted, a transaction is guaranteed to finish executing before its deadline. A transaction is considered to have finished executing if exactly one of two things occur: Either its primary task is completed (successful commitment), or its compensating task is completed (safe termination). Committed transactions bring a profit to the system, whereas a terminated transaction brings no profit. The goal of the admission control and scheduling protocols (e.g., concurrency control, I/O scheduling, memory management) employed in the system is to maximize system profit. In that respect, we describe a number of concurrency admission control strategies and contrast (through simulations) their relative performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we examine a number of admission control and scheduling protocols for high-performance web servers based on a 2-phase policy for serving HTTP requests. The first "registration" phase involves establishing the TCP connection for the HTTP request and parsing/interpreting its arguments, whereas the second "service" phase involves the service/transmission of data in response to the HTTP request. By introducing a delay between these two phases, we show that the performance of a web server could be potentially improved through the adoption of a number of scheduling policies that optimize the utilization of various system components (e.g. memory cache and I/O). In addition, to its premise for improving the performance of a single web server, the delineation between the registration and service phases of an HTTP request may be useful for load balancing purposes on clusters of web servers. We are investigating the use of such a mechanism as part of the Commonwealth testbed being developed at Boston University.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we present Slack Stealing Job Admission Control (SSJAC)---a methodology for scheduling periodic firm-deadline tasks with variable resource requirements, subject to controllable Quality of Service (QoS) constraints. In a system that uses Rate Monotonic Scheduling, SSJAC augments the slack stealing algorithm of Thuel et al with an admission control policy to manage the variability in the resource requirements of the periodic tasks. This enables SSJAC to take advantage of the 31\% of utilization that RMS cannot use, as well as any utilization unclaimed by jobs that are not admitted into the system. Using SSJAC, each task in the system is assigned a resource utilization threshold that guarantees the minimal acceptable QoS for that task (expressed as an upper bound on the rate of missed deadlines). Job admission control is used to ensure that (1) only those jobs that will complete by their deadlines are admitted, and (2) tasks do not interfere with each other, thus a job can only monopolize the slack in the system, but not the time guaranteed to jobs of other tasks. We have evaluated SSJAC against RMS and Statistical RMS (SRMS). Ignoring overhead issues, SSJAC consistently provides better performance than RMS in overload, and, in certain conditions, better performance than SRMS. In addition, to evaluate optimality of SSJAC in an absolute sense, we have characterized the performance of SSJAC by comparing it to an inefficient, yet optimal scheduler for task sets with harmonic periods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation, an exercise in practical theology, consists of a critical conversation between the evangelistic practice of Campus Crusade for Christ in two American university contexts, Bryan Stone's ecclesiologically grounded theology of evangelism, and William Abraham's eschatologically grounded theology of evangelism. It seeks to provide these evangelizing communities several strategic proposals for a more ecclesiologically and eschatologically grounded practice of evangelism within a university context. The current literature on evangelism is long on evangelistic strategy and activity, but short on theological analysis and reflection. This study focuses on concrete practices, but is grounded in a thick description of two particular contexts (derived from qualitative research methods) and a theological analysis of the ecclesiological and eschatological beliefs embedded within their evangelistic activities. The dissertation provides an historical overview of important figures, ideas, and events that helped mold the practice of evangelism inherited by the two ministries of this study, beginning with the famous Haystack Revival on Williams College in 1806. Both ministries, Campus Crusade for Christ at Bowling Green State University (Ohio) and at Washington State University, inherited an evangelistic practice sorely infected with many of the classic distortions that both Abraham and Stone attempt to correct. Qualitative research methods detail the direction that Campus Crusade for Christ at Bowling Green State University (Ohio) and Washington State University have taken the practice of evangelism they inherited. Applying the analytical categories that emerge from a detailed summary of Stone and Abraham to qualitative data of these two ministries reveals several ways evangelism has morphed in a manner sympathetic to Stone's insistence that the central logic of evangelism is the embodied witness of the church. The results of this analysis reveal the subversive and pervasive influence of modernity on these evangelizing communities—an influence that warrants several corrective strategic proposals including: 1) re-situating evangelism within a reading of the biblical narrative that emphasizes the present, social, public, and realized nature of the gospel of the kingdom of God rather than simply its future, personal, private, and unrealized dimensions; 2) clarifying the nature of the evangelizing communities and their relationship to the church; and 3) emphasizing the virtues that characterize a new evangelistic exemplar who is incarnational, intentional, humble, and courageous.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A listing of graduate of Boston University School of Theology and predecessor school. Arranged by class year, alphabetical by last name and geographically by region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A working paper for discussion

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-speed networks, such as ATM networks, are expected to support diverse Quality of Service (QoS) constraints, including real-time QoS guarantees. Real-time QoS is required by many applications such as those that involve voice and video communication. To support such services, routing algorithms that allow applications to reserve the needed bandwidth over a Virtual Circuit (VC) have been proposed. Commonly, these bandwidth-reservation algorithms assign VCs to routes using the least-loaded concept, and thus result in balancing the load over the set of all candidate routes. In this paper, we show that for such reservation-based protocols|which allow for the exclusive use of a preset fraction of a resource's bandwidth for an extended period of time-load balancing is not desirable as it results in resource fragmentation, which adversely affects the likelihood of accepting new reservations. In particular, we show that load-balancing VC routing algorithms are not appropriate when the main objective of the routing protocol is to increase the probability of finding routes that satisfy incoming VC requests, as opposed to equalizing the bandwidth utilization along the various routes. We present an on-line VC routing scheme that is based on the concept of "load profiling", which allows a distribution of "available" bandwidth across a set of candidate routes to match the characteristics of incoming VC QoS requests. We show the effectiveness of our load-profiling approach when compared to traditional load-balancing and load-packing VC routing schemes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To support the diverse Quality of Service (QoS) requirements of real-time (e.g. audio/video) applications in integrated services networks, several routing algorithms that allow for the reservation of the needed bandwidth over a Virtual Circuit (VC) established on one of several candidate routes have been proposed. Traditionally, such routing is done using the least-loaded concept, and thus results in balancing the load across the set of candidate routes. In a recent study, we have established the inadequacy of this load balancing practice and proposed the use of load profiling as an alternative. Load profiling techniques allow the distribution of "available" bandwidth across a set of candidate routes to match the characteristics of incoming VC QoS requests. In this paper we thoroughly characterize the performance of VC routing using load profiling and contrast it to routing using load balancing and load packing. We do so both analytically and via extensive simulations of multi-class traffic routing in Virtual Path (VP) based networks. Our findings confirm that for routing guaranteed bandwidth flows in VP networks, load balancing is not desirable as it results in VP bandwidth fragmentation, which adversely affects the likelihood of accepting new VC requests. This fragmentation is more pronounced when the granularity of VC requests is large. Typically, this occurs when a common VC is established to carry the aggregate traffic flow of many high-bandwidth real-time sources. For VP-based networks, our simulation results show that our load-profiling VC routing scheme performs better or as well as the traditional load-balancing VC routing in terms of revenue under both skewed and uniform workloads. Furthermore, load-profiling routing improves routing fairness by proactively increasing the chances of admitting high-bandwidth connections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development and deployment of distributed network-aware applications and services over the Internet require the ability to compile and maintain a model of the underlying network resources with respect to (one or more) characteristic properties of interest. To be manageable, such models must be compact, and must enable a representation of properties along temporal, spatial, and measurement resolution dimensions. In this paper, we propose a general framework for the construction of such metric-induced models using end-to-end measurements. We instantiate our approach using one such property, packet loss rates, and present an analytical framework for the characterization of Internet loss topologies. From the perspective of a server the loss topology is a logical tree rooted at the server with clients at its leaves, in which edges represent lossy paths between a pair of internal network nodes. We show how end-to-end unicast packet probing techniques could b e used to (1) infer a loss topology and (2) identify the loss rates of links in an existing loss topology. Correct, efficient inference of loss topology information enables new techniques for aggregate congestion control, QoS admission control, connection scheduling and mirror site selection. We report on simulation, implementation, and Internet deployment results that show the effectiveness of our approach and its robustness in terms of its accuracy and convergence over a wide range of network conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate measurement of network bandwidth is crucial for flexible Internet applications and protocols which actively manage and dynamically adapt to changing utilization of network resources. These applications must do so to perform tasks such as distributing and delivering high-bandwidth media, scheduling service requests and performing admission control. Extensive work has focused on two approaches to measuring bandwidth: measuring it hop-by-hop, and measuring it end-to-end along a path. Unfortunately, best-practice techniques for the former are inefficient and techniques for the latter are only able to observe bottlenecks visible at end-to-end scope. In this paper, we develop and simulate end-to-end probing methods which can measure bottleneck bandwidth along arbitrary, targeted subpaths of a path in the network, including subpaths shared by a set of flows. As another important contribution, we describe a number of practical applications which we foresee as standing to benefit from solutions to this problem, especially in emerging, flexible network architectures such as overlay networks, ad-hoc networks, peer-to-peer architectures and massively accessed content servers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The advent of virtualization and cloud computing technologies necessitates the development of effective mechanisms for the estimation and reservation of resources needed by content providers to deliver large numbers of video-on-demand (VOD) streams through the cloud. Unfortunately, capacity planning for the QoS-constrained delivery of a large number of VOD streams is inherently difficult as VBR encoding schemes exhibit significant bandwidth variability. In this paper, we present a novel resource management scheme to make such allocation decisions using a mixture of per-stream reservations and an aggregate reservation, shared across all streams to accommodate peak demands. The shared reservation provides capacity slack that enables statistical multiplexing of peak rates, while assuring analytically bounded frame-drop probabilities, which can be adjusted by trading off buffer space (and consequently delay) and bandwidth. Our two-tiered bandwidth allocation scheme enables the delivery of any set of streams with less bandwidth (or equivalently with higher link utilization) than state-of-the-art deterministic smoothing approaches. The algorithm underlying our proposed frame-work uses three per-stream parameters and is linear in the number of servers, making it particularly well suited for use in an on-line setting. We present results from extensive trace-driven simulations, which confirm the efficiency of our scheme especially for small buffer sizes and delay bounds, and which underscore the significant realizable bandwidth savings, typically yielding losses that are an order of magnitude or more below our analytically derived bounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper we present Statistical Rate Monotonic Scheduling (SRMS), a generalization of the classical RMS results of Liu and Layland that allows scheduling periodic tasks with highly variable execution times and statistical QoS requirements. Similar to RMS, SRMS has two components: a feasibility test and a scheduling algorithm. The feasibility test for SRMS ensures that using SRMS' scheduling algorithms, it is possible for a given periodic task set to share a given resource (e.g. a processor, communication medium, switching device, etc.) in such a way that such sharing does not result in the violation of any of the periodic tasks QoS constraints. The SRMS scheduling algorithm incorporates a number of unique features. First, it allows for fixed priority scheduling that keeps the tasks' value (or importance) independent of their periods. Second, it allows for job admission control, which allows the rejection of jobs that are not guaranteed to finish by their deadlines as soon as they are released, thus enabling the system to take necessary compensating actions. Also, admission control allows the preservation of resources since no time is spent on jobs that will miss their deadlines anyway. Third, SRMS integrates reservation-based and best-effort resource scheduling seamlessly. Reservation-based scheduling ensures the delivery of the minimal requested QoS; best-effort scheduling ensures that unused, reserved bandwidth is not wasted, but rather used to improve QoS further. Fourth, SRMS allows a system to deal gracefully with overload conditions by ensuring a fair deterioration in QoS across all tasks---as opposed to penalizing tasks with longer periods, for example. Finally, SRMS has the added advantage that its schedulability test is simple and its scheduling algorithm has a constant overhead in the sense that the complexity of the scheduler is not dependent on the number of the tasks in the system. We have evaluated SRMS against a number of alternative scheduling algorithms suggested in the literature (e.g. RMS and slack stealing), as well as refinements thereof, which we describe in this paper. Consistently throughout our experiments, SRMS provided the best performance. In addition, to evaluate the optimality of SRMS, we have compared it to an inefficient, yet optimal scheduler for task sets with harmonic periods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Statistical Rate Monotonic Scheduling (SRMS) is a generalization of the classical RMS results of Liu and Layland [LL73] for periodic tasks with highly variable execution times and statistical QoS requirements. The main tenet of SRMS is that the variability in task resource requirements could be smoothed through aggregation to yield guaranteed QoS. This aggregation is done over time for a given task and across multiple tasks for a given period of time. Similar to RMS, SRMS has two components: a feasibility test and a scheduling algorithm. SRMS feasibility test ensures that it is possible for a given periodic task set to share a given resource without violating any of the statistical QoS constraints imposed on each task in the set. The SRMS scheduling algorithm consists of two parts: a job admission controller and a scheduler. The SRMS scheduler is a simple, preemptive, fixed-priority scheduler. The SRMS job admission controller manages the QoS delivered to the various tasks through admit/reject and priority assignment decisions. In particular, it ensures the important property of task isolation, whereby tasks do not infringe on each other. In this paper we present the design and implementation of SRMS within the KURT Linux Operating System [HSPN98, SPH 98, Sri98]. KURT Linux supports conventional tasks as well as real-time tasks. It provides a mechanism for transitioning from normal Linux scheduling to a mixed scheduling of conventional and real-time tasks, and to a focused mode where only real-time tasks are scheduled. We overview the technical issues that we had to overcome in order to integrate SRMS into KURT Linux and present the API we have developed for scheduling periodic real-time tasks using SRMS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Most real-time scheduling problems are known to be NP-complete. To enable accurate comparison between the schedules of heuristic algorithms and the optimal schedule, we introduce an omniscient oracle. This oracle provides schedules for periodic task sets with harmonic periods and variable resource requirements. Three different job value functions are described and implemented. Each corresponds to a different system goal. The oracle is used to examine the performance of different on-line schedulers under varying loads, including overload. We have compared the oracle against Rate Monotonic Scheduling, Statistical Rate Monotonic Scheduling, and Slack Stealing Job Admission Control Scheduling. Consistently, the oracle provides an upper bound on performance for the metric under consideration.