1 resultado para Ulrich, Duke of Württemberg, 1487-1550
em Boston University Digital Common
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (1)
- Aberystwyth University Repository - Reino Unido (5)
- Adam Mickiewicz University Repository (1)
- Aquatic Commons (8)
- ARCA - Repositório Institucional da FIOCRUZ (1)
- Archive of European Integration (6)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (45)
- Biblioteca Valenciana Digital - Ministerio de Educación, Cultura y Deporte - Valencia - Espanha (2)
- Biodiversity Heritage Library, United States (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (6)
- Boston University Digital Common (1)
- Brock University, Canada (8)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (21)
- CentAUR: Central Archive University of Reading - UK (44)
- Center for Jewish History Digital Collections (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (42)
- Cochin University of Science & Technology (CUSAT), India (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Dalarna University College Electronic Archive (2)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- DigitalCommons - The University of Maine Research (2)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (10)
- Duke University (28)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (3)
- Greenwich Academic Literature Archive - UK (4)
- Harvard University (3)
- Helda - Digital Repository of University of Helsinki (39)
- Helvia: Repositorio Institucional de la Universidad de Córdoba (1)
- Indian Institute of Science - Bangalore - Índia (9)
- Institutional Repository of Leibniz University Hannover (1)
- Massachusetts Institute of Technology (2)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (4)
- Portal de Revistas Científicas Complutenses - Espanha (7)
- Publishing Network for Geoscientific & Environmental Data (24)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (100)
- Queensland University of Technology - ePrints Archive (75)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (20)
- Royal College of Art Research Repository - Uninet Kingdom (3)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (2)
- Universidad Autónoma de Nuevo León, Mexico (1)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (5)
- Universidade Complutense de Madrid (2)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade dos Açores - Portugal (1)
- Universidade Federal do Pará (1)
- Universita di Parma (1)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (19)
- Université de Lausanne, Switzerland (3)
- Université de Montréal, Canada (5)
- University of Michigan (350)
- University of Queensland eSpace - Australia (3)
- WestminsterResearch - UK (1)
Resumo:
This paper presents a lower-bound result on the computational power of a genetic algorithm in the context of combinatorial optimization. We describe a new genetic algorithm, the merged genetic algorithm, and prove that for the class of monotonic functions, the algorithm finds the optimal solution, and does so with an exponential convergence rate. The analysis pertains to the ideal behavior of the algorithm where the main task reduces to showing convergence of probability distributions over the search space of combinatorial structures to the optimal one. We take exponential convergence to be indicative of efficient solvability for the sample-bounded algorithm, although a sampling theory is needed to better relate the limit behavior to actual behavior. The paper concludes with a discussion of some immediate problems that lie ahead.