9 resultados para UNIX (Computer operating system)

em Boston University Digital Common


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines how and why web server performance changes as the workload at the server varies. We measure the performance of a PC acting as a standalone web server, running Apache on top of Linux. We use two important tools to understand what aspects of software architecture and implementation determine performance at the server. The first is a tool that we developed, called WebMonitor, which measures activity and resource consumption, both in the operating system and in the web server. The second is the kernel profiling facility distributed as part of Linux. We vary the workload at the server along two important dimensions: the number of clients concurrently accessing the server, and the size of the documents stored on the server. Our results quantify and show how more clients and larger files stress the web server and operating system in different and surprising ways. Our results also show the importance of fixed costs (i.e., opening and closing TCP connections, and updating the server log) in determining web server performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many people suffer from conditions that lead to deterioration of motor control and makes access to the computer using traditional input devices difficult. In particular, they may loose control of hand movement to the extent that the standard mouse cannot be used as a pointing device. Most current alternatives use markers or specialized hardware to track and translate a user's movement to pointer movement. These approaches may be perceived as intrusive, for example, wearable devices. Camera-based assistive systems that use visual tracking of features on the user's body often require cumbersome manual adjustment. This paper introduces an enhanced computer vision based strategy where features, for example on a user's face, viewed through an inexpensive USB camera, are tracked and translated to pointer movement. The main contributions of this paper are (1) enhancing a video based interface with a mechanism for mapping feature movement to pointer movement, which allows users to navigate to all areas of the screen even with very limited physical movement, and (2) providing a customizable, hierarchical navigation framework for human computer interaction (HCI). This framework provides effective use of the vision-based interface system for accessing multiple applications in an autonomous setting. Experiments with several users show the effectiveness of the mapping strategy and its usage within the application framework as a practical tool for desktop users with disabilities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Server performance has become a crucial issue for improving the overall performance of the World-Wide Web. This paper describes Webmonitor, a tool for evaluating and understanding server performance, and presents new results for a realistic workload. Webmonitor measures activity and resource consumption, both within the kernel and in HTTP processes running in user space. Webmonitor is implemented using an efficient combination of sampling and event-driven techniques that exhibit low overhead. Our initial implementation is for the Apache World-Wide Web server running on the Linux operating system. We demonstrate the utility of Webmonitor by measuring and understanding the performance of a Pentium-based PC acting as a dedicated WWW server. Our workload uses a file size distribution with a heavy tail. This captures the fact that Web servers must concurrently handle some requests for large audio and video files, and a large number of requests for small documents, containing text or images. Our results show that in a Web server saturated by client requests, over 90% of the time spent handling HTTP requests is spent in the kernel. Furthermore, keeping TCP connections open, as required by TCP, causes a factor of 2-9 increase in the elapsed time required to service an HTTP request. Data gathered from Webmonitor provide insight into the causes of this performance penalty. Specifically, we observe a significant increase in resource consumption along three dimensions: the number of HTTP processes running at the same time, CPU utilization, and memory utilization. These results emphasize the important role of operating system and network protocol implementation in determining Web server performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Statistical Rate Monotonic Scheduling (SRMS) is a generalization of the classical RMS results of Liu and Layland [LL73] for periodic tasks with highly variable execution times and statistical QoS requirements. The main tenet of SRMS is that the variability in task resource requirements could be smoothed through aggregation to yield guaranteed QoS. This aggregation is done over time for a given task and across multiple tasks for a given period of time. Similar to RMS, SRMS has two components: a feasibility test and a scheduling algorithm. SRMS feasibility test ensures that it is possible for a given periodic task set to share a given resource without violating any of the statistical QoS constraints imposed on each task in the set. The SRMS scheduling algorithm consists of two parts: a job admission controller and a scheduler. The SRMS scheduler is a simple, preemptive, fixed-priority scheduler. The SRMS job admission controller manages the QoS delivered to the various tasks through admit/reject and priority assignment decisions. In particular, it ensures the important property of task isolation, whereby tasks do not infringe on each other. In this paper we present the design and implementation of SRMS within the KURT Linux Operating System [HSPN98, SPH 98, Sri98]. KURT Linux supports conventional tasks as well as real-time tasks. It provides a mechanism for transitioning from normal Linux scheduling to a mixed scheduling of conventional and real-time tasks, and to a focused mode where only real-time tasks are scheduled. We overview the technical issues that we had to overcome in order to integrate SRMS into KURT Linux and present the API we have developed for scheduling periodic real-time tasks using SRMS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Under high loads, a Web server may be servicing many hundreds of connections concurrently. In traditional Web servers, the question of the order in which concurrent connections are serviced has been left to the operating system. In this paper we ask whether servers might provide better service by using non-traditional service ordering. In particular, for the case when a Web server is serving static files, we examine the costs and benefits of a policy that gives preferential service to short connections. We start by assessing the scheduling behavior of a commonly used server (Apache running on Linux) with respect to connection size and show that it does not appear to provide preferential service to short connections. We then examine the potential performance improvements of a policy that does favor short connections (shortest-connection-first). We show that mean response time can be improved by factors of four or five under shortest-connection-first, as compared to an (Apache-like) size-independent policy. Finally we assess the costs of shortest-connection-first scheduling in terms of unfairness (i.e., the degree to which long connections suffer). We show that under shortest-connection-first scheduling, long connections pay very little penalty. This surprising result can be understood as a consequence of heavy-tailed Web server workloads, in which most connections are small, but most server load is due to the few large connections. We support this explanation using analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A probabilistic, nonlinear supervised learning model is proposed: the Specialized Mappings Architecture (SMA). The SMA employs a set of several forward mapping functions that are estimated automatically from training data. Each specialized function maps certain domains of the input space (e.g., image features) onto the output space (e.g., articulated body parameters). The SMA can model ambiguous, one-to-many mappings that may yield multiple valid output hypotheses. Once learned, the mapping functions generate a set of output hypotheses for a given input via a statistical inference procedure. The SMA inference procedure incorporates an inverse mapping or feedback function in evaluating the likelihood of each of the hypothesis. Possible feedback functions include computer graphics rendering routines that can generate images for given hypotheses. The SMA employs a variant of the Expectation-Maximization algorithm for simultaneous learning of the specialized domains along with the mapping functions, and approximate strategies for inference. The framework is demonstrated in a computer vision system that can estimate the articulated pose parameters of a human’s body or hands, given silhouettes from a single image. The accuracy and stability of the SMA are also tested using synthetic images of human bodies and hands, where ground truth is known.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fundamental task of vision systems is to infer the state of the world given some form of visual observations. From a computational perspective, this often involves facing an ill-posed problem; e.g., information is lost via projection of the 3D world into a 2D image. Solution of an ill-posed problem requires additional information, usually provided as a model of the underlying process. It is important that the model be both computationally feasible as well as theoretically well-founded. In this thesis, a probabilistic, nonlinear supervised computational learning model is proposed: the Specialized Mappings Architecture (SMA). The SMA framework is demonstrated in a computer vision system that can estimate the articulated pose parameters of a human body or human hands, given images obtained via one or more uncalibrated cameras. The SMA consists of several specialized forward mapping functions that are estimated automatically from training data, and a possibly known feedback function. Each specialized function maps certain domains of the input space (e.g., image features) onto the output space (e.g., articulated body parameters). A probabilistic model for the architecture is first formalized. Solutions to key algorithmic problems are then derived: simultaneous learning of the specialized domains along with the mapping functions, as well as performing inference given inputs and a feedback function. The SMA employs a variant of the Expectation-Maximization algorithm and approximate inference. The approach allows the use of alternative conditional independence assumptions for learning and inference, which are derived from a forward model and a feedback model. Experimental validation of the proposed approach is conducted in the task of estimating articulated body pose from image silhouettes. Accuracy and stability of the SMA framework is tested using artificial data sets, as well as synthetic and real video sequences of human bodies and hands.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We designed the Eyebrow-Clicker, a camera-based human computer interface system that implements a new form of binary switch. When the user raises his or her eyebrows, the binary switch is activated and a selection command is issued. The Eyebrow-Clicker thus replaces the "click" functionality of a mouse. The system initializes itself by detecting the user's eyes and eyebrows, tracks these features at frame rate, and recovers in the event of errors. The initialization uses the natural blinking of the human eye to select suitable templates for tracking. Once execution has begun, a user therefore never has to restart the program or even touch the computer. In our experiments with human-computer interaction software, the system successfully determined 93% of the time when a user raised his eyebrows.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper is centered around the design of a thread- and memory-safe language, primarily for the compilation of application-specific services for extensible operating systems. We describe various issues that have influenced the design of our language, called Cuckoo, that guarantees safety of programs with potentially asynchronous flows of control. Comparisons are drawn between Cuckoo and related software safety techniques, including Cyclone and software-based fault isolation (SFI), and performance results suggest our prototype compiler is capable of generating safe code that executes with low runtime overheads, even without potential code optimizations. Compared to Cyclone, Cuckoo is able to safely guard accesses to memory when programs are multithreaded. Similarly, Cuckoo is capable of enforcing memory safety in situations that are potentially troublesome for techniques such as SFI.