2 resultados para Two-level Atom

em Boston University Digital Common


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider the motion of ballistic electrons in a miniband of a semiconductor superlattice (SSL) under the influence of an external, time-periodic electric field. We use the semi-classical balance-equation approach which incorporates elastic and inelastic scattering (as dissipation) and the self-consistent field generated by the electron motion. The coupling of electrons in the miniband to the self-consistent field produces a cooperative nonlinear oscillatory mode which, when interacting with the oscillatory external field and the intrinsic Bloch-type oscillatory mode, can lead to complicated dynamics, including dissipative chaos. For a range of values of the dissipation parameters we determine the regions in the amplitude-frequency plane of the external field in which chaos can occur. Our results suggest that for terahertz external fields of the amplitudes achieved by present-day free electron lasers, chaos may be observable in SSLs. We clarify the nature of this novel nonlinear dynamics in the superlattice-external field system by exploring analogies to the Dicke model of an ensemble of two-level atoms coupled with a resonant cavity field and to Josephson junctions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the increasing demand for document transfer services such as the World Wide Web comes a need for better resource management to reduce the latency of documents in these systems. To address this need, we analyze the potential for document caching at the application level in document transfer services. We have collected traces of actual executions of Mosaic, reflecting over half a million user requests for WWW documents. Using those traces, we study the tradeoffs between caching at three levels in the system, and the potential for use of application-level information in the caching system. Our traces show that while a high hit rate in terms of URLs is achievable, a much lower hit rate is possible in terms of bytes, because most profitably-cached documents are small. We consider the performance of caching when applied at the level of individual user sessions, at the level of individual hosts, and at the level of a collection of hosts on a single LAN. We show that the performance gain achievable by caching at the session level (which is straightforward to implement) is nearly all of that achievable at the LAN level (where caching is more difficult to implement). However, when resource requirements are considered, LAN level caching becomes much more desirable, since it can achieve a given level of caching performance using a much smaller amount of cache space. Finally, we consider the use of organizational boundary information as an example of the potential for use of application-level information in caching. Our results suggest that distinguishing between documents produced locally and those produced remotely can provide useful leverage in designing caching policies, because of differences in the potential for sharing these two document types among multiple users.