3 resultados para Turning lanes.
em Boston University Digital Common
Resumo:
Sermon preached at Boston University School of Theology during Wednesday Chapel on October 24, 2007
Resumo:
We leverage the buffering capabilities of end-systems to achieve scalable, asynchronous delivery of streams in a peer-to-peer environment. Unlike existing cache-and-relay schemes, we propose a distributed prefetching protocol where peers prefetch and store portions of the streaming media ahead of their playout time, thus not only turning themselves to possible sources for other peers but their prefetched data can allow them to overcome the departure of their source-peer. This stands in sharp contrast to existing cache-and-relay schemes where the departure of the source-peer forces its peer children to go the original server, thus disrupting their service and increasing server and network load. Through mathematical analysis and simulations, we show the effectiveness of maintaining such asynchronous multicasts from several source-peers to other children peers, and the efficacy of prefetching in the face of peer departures. We confirm the scalability of our dPAM protocol as it is shown to significantly reduce server load.
Resumo:
To construct high performance Web servers, system builders are increasingly turning to distributed designs. An important challenge that arises in distributed Web servers is the need to direct incoming connections to individual hosts. Previous methods for connection routing have employed a centralized node which handles all incoming requests. In contrast, we propose a distributed approach, called Distributed Packet Rewriting (DPR), in which all hosts of the distributed system participate in connection routing. We argue that this approach promises better scalability and fault-tolerance than the centralized approach. We describe our implementation of four variants of DPR and compare their performance. We show that DPR provides performance comparable to centralized alternatives, measured in terms of throughput and delay under the SPECweb96 benchmark. Finally, we argue that DPR is particularly attractive both for small scale systems and for systems following the emerging trend toward increasingly intelligent I/O subsystems.