3 resultados para Travelers, Italian.
em Boston University Digital Common
Resumo:
ImageRover is a search by image content navigation tool for the world wide web. To gather images expediently, the image collection subsystem utilizes a distributed fleet of WWW robots running on different computers. The image robots gather information about the images they find, computing the appropriate image decompositions and indices, and store this extracted information in vector form for searches based on image content. At search time, users can iteratively guide the search through the selection of relevant examples. Search performance is made efficient through the use of an approximate, optimized k-d tree algorithm. The system employs a novel relevance feedback algorithm that selects the distance metrics appropriate for a particular query.
Resumo:
ImageRover is a search by image content navigation tool for the world wide web. The staggering size of the WWW dictates certain strategies and algorithms for image collection, digestion, indexing, and user interface. This paper describes two key components of the ImageRover strategy: image digestion and relevance feedback. Image digestion occurs during image collection; robots digest the images they find, computing image decompositions and indices, and storing this extracted information in vector form for searches based on image content. Relevance feedback occurs during index search; users can iteratively guide the search through the selection of relevant examples. ImageRover employs a novel relevance feedback algorithm to determine the weighted combination of image similarity metrics appropriate for a particular query. ImageRover is available and running on the web site.
Resumo:
Existing type systems for object calculi are based on invariant subtyping. Subtyping invariance is required for soundness of static typing in the presence of method overrides, but it is often in the way of the expressive power of the type system. Flexibility of static typing can be recovered in different ways: in first-order systems, by the adoption of object types with variance annotations, in second-order systems by resorting to Self types. Type inference is known to be P-complete for first-order systems of finite and recursive object types, and NP-complete for a restricted version of Self types. The complexity of type inference for systems with variance annotations is yet unknown. This paper presents a new object type system based on the notion of Split types, a form of object types where every method is assigned two types, namely, an update type and a select type. The subtyping relation that arises for Split types is variant and, as a result, subtyping can be performed both in width and in depth. The new type system generalizes all the existing first-order type systems for objects, including systems based on variance annotations. Interestingly, the additional expressive power does not affect the complexity of the type inference problem, as we show by presenting an O(n^3) inference algorithm.