4 resultados para Transmission geometries
em Boston University Digital Common
Resumo:
We use specialty fiber (“vortex fiber”), to create and propagate orbital angular momentum states over ~kilometer lengths in telecom band (~1550nm). The spiral phase structure of the vortex beams was confirmed by interference with a Gaussian reference. This result is an important step toward achieving long-range classical and quantum communication links using orbital angular momentum of light.
Resumo:
We postulate that exogenous losses-which are typically regarded as introducing undesirable "noise" that needs to be filtered out or hidden from end points-can be surprisingly beneficial. In this paper we evaluate the effects of exogenous losses on transmission control loops, focusing primarily on efficiency and convergence to fairness properties. By analytically capturing the effects of exogenous losses, we are able to characterize the transient behavior of TCP. Our numerical results suggest that "noise" resulting from exogenous losses should not be filtered out blindly, and that a careful examination of the parameter space leads to better strategies regarding the treatment of exogenous losses inside the network. Specifically, we show that while low levels of exogenous losses do help connections converge to their fair share, higher levels of losses lead to inefficient network utilization. We draw the line between these two cases by determining whether or not it is advantageous to hide, or more interestingly introduce, exogenous losses. Our proposed approach is based on classifying the effects of exogenous losses into long-term and short-term effects. Such classification informs the extent to which we control exogenous losses, so as to operate in an efficient and fair region. We validate our results through simulations.
Resumo:
TCP performance degrades when end-to-end connections extend over wireless connections-links which are characterized by high bit error rate and intermittent connectivity. Such link characteristics can significantly degrade TCP performance as the TCP sender assumes wireless losses to be congestion losses resulting in unnecessary congestion control actions. Link errors can be reduced by increasing transmission power, code redundancy (FEC) or number of retransmissions (ARQ). But increasing power costs resources, increasing code redundancy reduces available channel bandwidth and increasing persistency increases end-to-end delay. The paper proposes a TCP optimization through proper tuning of power management, FEC and ARQ in wireless environments (WLAN and WWAN). In particular, we conduct analytical and numerical analysis taking into "wireless-aware" TCP) performance under different settings. Our results show that increasing power, redundancy and/or retransmission levels always improves TCP performance by reducing link-layer losses. However, such improvements are often associated with cost and arbitrary improvement cannot be realized without paying a lot in return. It is therefore important to consider some kind of net utility function that should be optimized, thus maximizing throughput at the least possible cost.
Resumo:
It is a neural network truth universally acknowledged, that the signal transmitted to a target node must be equal to the product of the path signal times a weight. Analysis of catastrophic forgetting by distributed codes leads to the unexpected conclusion that this universal synaptic transmission rule may not be optimal in certain neural networks. The distributed outstar, a network designed to support stable codes with fast or slow learning, generalizes the outstar network for spatial pattern learning. In the outstar, signals from a source node cause weights to learn and recall arbitrary patterns across a target field of nodes. The distributed outstar replaces the outstar source node with a source field, of arbitrarily many nodes, where the activity pattern may be arbitrarily distributed or compressed. Learning proceeds according to a principle of atrophy due to disuse whereby a path weight decreases in joint proportion to the transmittcd path signal and the degree of disuse of the target node. During learning, the total signal to a target node converges toward that node's activity level. Weight changes at a node are apportioned according to the distributed pattern of converging signals three types of synaptic transmission, a product rule, a capacity rule, and a threshold rule, are examined for this system. The three rules are computationally equivalent when source field activity is maximally compressed, or winner-take-all when source field activity is distributed, catastrophic forgetting may occur. Only the threshold rule solves this problem. Analysis of spatial pattern learning by distributed codes thereby leads to the conjecture that the optimal unit of long-term memory in such a system is a subtractive threshold, rather than a multiplicative weight.