11 resultados para Traffic engineering.

em Boston University Digital Common


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Accurate knowledge of traffic demands in a communication network enables or enhances a variety of traffic engineering and network management tasks of paramount importance for operational networks. Directly measuring a complete set of these demands is prohibitively expensive because of the huge amounts of data that must be collected and the performance impact that such measurements would impose on the regular behavior of the network. As a consequence, we must rely on statistical techniques to produce estimates of actual traffic demands from partial information. The performance of such techniques is however limited due to their reliance on limited information and the high amount of computations they incur, which limits their convergence behavior. In this paper we study strategies to improve the convergence of a powerful statistical technique based on an Expectation-Maximization iterative algorithm. First we analyze modeling approaches to generating starting points. We call these starting points informed priors since they are obtained using actual network information such as packet traces and SNMP link counts. Second we provide a very fast variant of the EM algorithm which extends its computation range, increasing its accuracy and decreasing its dependence on the quality of the starting point. Finally, we study the convergence characteristics of our EM algorithm and compare it against a recently proposed Weighted Least Squares approach.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Network traffic arises from the superposition of Origin-Destination (OD) flows. Hence, a thorough understanding of OD flows is essential for modeling network traffic, and for addressing a wide variety of problems including traffic engineering, traffic matrix estimation, capacity planning, forecasting and anomaly detection. However, to date, OD flows have not been closely studied, and there is very little known about their properties. We present the first analysis of complete sets of OD flow timeseries, taken from two different backbone networks (Abilene and Sprint-Europe). Using Principal Component Analysis (PCA), we find that the set of OD flows has small intrinsic dimension. In fact, even in a network with over a hundred OD flows, these flows can be accurately modeled in time using a small number (10 or less) of independent components or dimensions. We also show how to use PCA to systematically decompose the structure of OD flow timeseries into three main constituents: common periodic trends, short-lived bursts, and noise. We provide insight into how the various constituents contribute to the overall structure of OD flows and explore the extent to which this decomposition varies over time.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Accurate knowledge of traffic demands in a communication network enables or enhances a variety of traffic engineering and network management tasks of paramount importance for operational networks. Directly measuring a complete set of these demands is prohibitively expensive because of the huge amounts of data that must be collected and the performance impact that such measurements would impose on the regular behavior of the network. As a consequence, we must rely on statistical techniques to produce estimates of actual traffic demands from partial information. The performance of such techniques is however limited due to their reliance on limited information and the high amount of computations they incur, which limits their convergence behavior. In this paper we study a two-step approach for inferring network traffic demands. First we elaborate and evaluate a modeling approach for generating good starting points to be fed to iterative statistical inference techniques. We call these starting points informed priors since they are obtained using actual network information such as packet traces and SNMP link counts. Second we provide a very fast variant of the EM algorithm which extends its computation range, increasing its accuracy and decreasing its dependence on the quality of the starting point. Finally, we evaluate and compare alternative mechanisms for generating starting points and the convergence characteristics of our EM algorithm against a recently proposed Weighted Least Squares approach.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Detecting and understanding anomalies in IP networks is an open and ill-defined problem. Toward this end, we have recently proposed the subspace method for anomaly diagnosis. In this paper we present the first large-scale exploration of the power of the subspace method when applied to flow traffic. An important aspect of this approach is that it fuses information from flow measurements taken throughout a network. We apply the subspace method to three different types of sampled flow traffic in a large academic network: multivariate timeseries of byte counts, packet counts, and IP-flow counts. We show that each traffic type brings into focus a different set of anomalies via the subspace method. We illustrate and classify the set of anomalies detected. We find that almost all of the anomalies detected represent events of interest to network operators. Furthermore, the anomalies span a remarkably wide spectrum of event types, including denial of service attacks (single-source and distributed), flash crowds, port scanning, downstream traffic engineering, high-rate flows, worm propagation, and network outage.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Internet measurements show that the size distribution of Web-based transactions is usually very skewed; a few large requests constitute most of the total traffic. Motivated by the advantages of scheduling algorithms which favor short jobs, we propose to perform differentiated control over Web-based transactions to give preferential service to short web requests. The control is realized through service semantics provided by Internet Traffic Managers, a Diffserv-like architecture. To evaluate the performance of such a control system, it is necessary to have a fast but accurate analytical method. To this end, we model the Internet as a time-shared system and propose a numerical approach which utilizes Kleinrock's conservation law to solve the model. The numerical results are shown to match well those obtained by packet-level simulation, which runs orders of magnitude slower than our numerical method.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We present a thorough characterization of the access patterns in blogspace -- a fast-growing constituent of the content available through the Internet -- which comprises a rich interconnected web of blog postings and comments by an increasingly prominent user community that collectively define what has become known as the blogosphere. Our characterization of over 35 million read, write, and administrative requests spanning a 28-day period is done from three different blogosphere perspectives. The server view characterizes the aggregate access patterns of all users to all blogs; the user view characterizes how individual users interact with blogosphere objects (blogs); the object view characterizes how individual blogs are accessed. Our findings support two important conclusions. First, we show that the nature of interactions between users and objects is fundamentally different in blogspace than that observed in traditional web content. Access to objects in blogspace could be conceived as part of an interaction between an author and its readership. As we show in our work, such interactions range from one-to-many "broadcast-type" and many-to-one "registration-type" communication between an author and its readers, to multi-way, iterative "parlor-type" dialogues among members of an interest group. This more-interactive nature of the blogosphere leads to interesting traffic and communication patterns, which are different from those observed in traditional web content. Second, we identify and characterize novel features of the blogosphere workload, and we investigate the similarities and differences between typical web server workloads and blogosphere server workloads. Given the increasing share of blogspace traffic, understanding such differences is important for capacity planning and traffic engineering purposes, for example.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent measurement based studies reveal that most of the Internet connections are short in terms of the amount of traffic they carry (mice), while a small fraction of the connections are carrying a large portion of the traffic (elephants). A careful study of the TCP protocol shows that without help from an Active Queue Management (AQM) policy, short connections tend to lose to long connections in their competition for bandwidth. This is because short connections do not gain detailed knowledge of the network state, and therefore they are doomed to be less competitive due to the conservative nature of the TCP congestion control algorithm. Inspired by the Differentiated Services (Diffserv) architecture, we propose to give preferential treatment to short connections inside the bottleneck queue, so that short connections experience less packet drop rate than long connections. This is done by employing the RIO (RED with In and Out) queue management policy which uses different drop functions for different classes of traffic. Our simulation results show that: (1) in a highly loaded network, preferential treatment is necessary to provide short TCP connections with better response time and fairness without hurting the performance of long TCP connections; (2) the proposed scheme still delivers packets in FIFO manner at each link, thus it maintains statistical multiplexing gain and does not misorder packets; (3) choosing a smaller default initial timeout value for TCP can help enhance the performance of short TCP flows, however not as effectively as our scheme and at the risk of congestion collapse; (4) in the worst case, our proposal works as well as a regular RED scheme, in terms of response time and goodput.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present a thorough characterization of the access patterns in blogspace, which comprises a rich interconnected web of blog postings and comments by an increasingly prominent user community that collectively define what has become known as the blogosphere. Our characterization of over 35 million read, write, and management requests spanning a 28-day period is done at three different levels. The user view characterizes how individual users interact with blogosphere objects (blogs); the object view characterizes how individual blogs are accessed; the server view characterizes the aggregate access patterns of all users to all blogs. The more-interactive nature of the blogosphere leads to interesting traffic and communication patterns, which are different from those observed for traditional web content. We identify and characterize novel features of the blogosphere workload, and we show the similarities and differences between typical web server workloads and blogosphere server workloads. Finally, based on our main characterization results, we build a new synthetic blogosphere workload generator called GBLOT, which aims at mimicking closely a stream of requests originating from a population of blog users. Given the increasing share of blogspace traffic, realistic workload models and tools are important for capacity planning and traffic engineering purposes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To provide real-time service or engineer constrained-based paths, networks require the underlying routing algorithm to be able to find low-cost paths that satisfy given Quality-of-Service (QoS) constraints. However, the problem of constrained shortest (least-cost) path routing is known to be NP-hard, and some heuristics have been proposed to find a near-optimal solution. However, these heuristics either impose relationships among the link metrics to reduce the complexity of the problem which may limit the general applicability of the heuristic, or are too costly in terms of execution time to be applicable to large networks. In this paper, we focus on solving the delay-constrained minimum-cost path problem, and present a fast algorithm to find a near-optimal solution. This algorithm, called DCCR (for Delay-Cost-Constrained Routing), is a variant of the k-shortest path algorithm. DCCR uses a new adaptive path weight function together with an additional constraint imposed on the path cost, to restrict the search space. Thus, DCCR can return a near-optimal solution in a very short time. Furthermore, we use the method proposed by Blokh and Gutin to further reduce the search space by using a tighter bound on path cost. This makes our algorithm more accurate and even faster. We call this improved algorithm SSR+DCCR (for Search Space Reduction+DCCR). Through extensive simulations, we confirm that SSR+DCCR performs very well compared to the optimal but very expensive solution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The majority of the traffic (bytes) flowing over the Internet today have been attributed to the Transmission Control Protocol (TCP). This strong presence of TCP has recently spurred further investigations into its congestion avoidance mechanism and its effect on the performance of short and long data transfers. At the same time, the rising interest in enhancing Internet services while keeping the implementation cost low has led to several service-differentiation proposals. In such service-differentiation architectures, much of the complexity is placed only in access routers, which classify and mark packets from different flows. Core routers can then allocate enough resources to each class of packets so as to satisfy delivery requirements, such as predictable (consistent) and fair service. In this paper, we investigate the interaction among short and long TCP flows, and how TCP service can be improved by employing a low-cost service-differentiation scheme. Through control-theoretic arguments and extensive simulations, we show the utility of isolating TCP flows into two classes based on their lifetime/size, namely one class of short flows and another of long flows. With such class-based isolation, short and long TCP flows have separate service queues at routers. This protects each class of flows from the other as they possess different characteristics, such as burstiness of arrivals/departures and congestion/sending window dynamics. We show the benefits of isolation, in terms of better predictability and fairness, over traditional shared queueing systems with both tail-drop and Random-Early-Drop (RED) packet dropping policies. The proposed class-based isolation of TCP flows has several advantages: (1) the implementation cost is low since it only requires core routers to maintain per-class (rather than per-flow) state; (2) it promises to be an effective traffic engineering tool for improved predictability and fairness for both short and long TCP flows; and (3) stringent delay requirements of short interactive transfers can be met by increasing the amount of resources allocated to the class of short flows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A number of problems in network operations and engineering call for new methods of traffic analysis. While most existing traffic analysis methods are fundamentally temporal, there is a clear need for the analysis of traffic across multiple network links — that is, for spatial traffic analysis. In this paper we give examples of problems that can be addressed via spatial traffic analysis. We then propose a formal approach to spatial traffic analysis based on the wavelet transform. Our approach (graph wavelets) generalizes the traditional wavelet transform so that it can be applied to data elements connected via an arbitrary graph topology. We explore the necessary and desirable properties of this approach and consider some of its possible realizations. We then apply graph wavelets to measurements from an operating network. Our results show that graph wavelets are very useful for our motivating problems; for example, they can be used to form highly summarized views of an entire network's traffic load, to gain insight into a network's global traffic response to a link failure, and to localize the extent of a failure event within the network.