4 resultados para Tracker

em Boston University Digital Common


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We designed the Eyebrow-Clicker, a camera-based human computer interface system that implements a new form of binary switch. When the user raises his or her eyebrows, the binary switch is activated and a selection command is issued. The Eyebrow-Clicker thus replaces the "click" functionality of a mouse. The system initializes itself by detecting the user's eyes and eyebrows, tracks these features at frame rate, and recovers in the event of errors. The initialization uses the natural blinking of the human eye to select suitable templates for tracking. Once execution has begun, a user therefore never has to restart the program or even touch the computer. In our experiments with human-computer interaction software, the system successfully determined 93% of the time when a user raised his eyebrows.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An automated system for detection of head movements is described. The goal is to label relevant head gestures in video of American Sign Language (ASL) communication. In the system, a 3D head tracker recovers head rotation and translation parameters from monocular video. Relevant head gestures are then detected by analyzing the length and frequency of the motion signal's peaks and valleys. Each parameter is analyzed independently, due to the fact that a number of relevant head movements in ASL are associated with major changes around one rotational axis. No explicit training of the system is necessary. Currently, the system can detect "head shakes." In experimental evaluation, classification performance is compared against ground-truth labels obtained from ASL linguists. Initial results are promising, as the system matches the linguists' labels in a significant number of cases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a multi-object multi-camera framework for tracking large numbers of tightly-spaced objects that rapidly move in three dimensions. We formulate the problem of finding correspondences across multiple views as a multidimensional assignment problem and use a greedy randomized adaptive search procedure to solve this NP-hard problem efficiently. To account for occlusions, we relax the one-to-one constraint that one measurement corresponds to one object and iteratively solve the relaxed assignment problem. After correspondences are established, object trajectories are estimated by stereoscopic reconstruction using an epipolar-neighborhood search. We embedded our method into a tracker-to-tracker multi-view fusion system that not only obtains the three-dimensional trajectories of closely-moving objects but also accurately settles track uncertainties that could not be resolved from single views due to occlusion. We conducted experiments to validate our greedy assignment procedure and our technique to recover from occlusions. We successfully track hundreds of flying bats and provide an analysis of their group behavior based on 150 reconstructed 3D trajectories.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We introduce Active Hidden Models (AHM) that utilize kernel methods traditionally associated with classification. We use AHMs to track deformable objects in video sequences by leveraging kernel projections. We introduce the "subset projection" method which improves the efficiency of our tracking approach by a factor of ten. We successfully tested our method on facial tracking with extreme head movements (including full 180-degree head rotation), facial expressions, and deformable objects. Given a kernel and a set of training observations, we derive unbiased estimates of the accuracy of the AHM tracker. Kernels are generally used in classification methods to make training data linearly separable. We prove that the optimal (minimum variance) tracking kernels are those that make the training observations linearly dependent.