1 resultado para Total Flow Management
em Boston University Digital Common
Filtro por publicador
- JISC Information Environment Repository (1)
- University of Cagliari UniCA Eprints (1)
- Aberystwyth University Repository - Reino Unido (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (1)
- Aquatic Commons (38)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (6)
- Aston University Research Archive (16)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (8)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (10)
- Boston University Digital Common (1)
- Brock University, Canada (3)
- Bulgarian Digital Mathematics Library at IMI-BAS (4)
- CaltechTHESIS (6)
- Cambridge University Engineering Department Publications Database (24)
- CentAUR: Central Archive University of Reading - UK (69)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (25)
- Cochin University of Science & Technology (CUSAT), India (10)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (2)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (2)
- CUNY Academic Works (5)
- Dalarna University College Electronic Archive (5)
- Department of Computer Science E-Repository - King's College London, Strand, London (2)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (2)
- Digital Commons - Michigan Tech (3)
- Digital Commons at Florida International University (7)
- Digital Peer Publishing (2)
- DigitalCommons@The Texas Medical Center (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (4)
- Duke University (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (37)
- FUNDAJ - Fundação Joaquim Nabuco (1)
- Greenwich Academic Literature Archive - UK (6)
- Helda - Digital Repository of University of Helsinki (20)
- Hospital Prof. Dr. Fernando Fonseca - Portugal (1)
- Indian Institute of Science - Bangalore - Índia (35)
- Instituto de Engenharia Nuclear, Brazil - Carpe dIEN (1)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (16)
- Instituto Superior de Psicologia Aplicada - Lisboa (1)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (3)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (2)
- National Center for Biotechnology Information - NCBI (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (7)
- Portal de Revistas Científicas Complutenses - Espanha (4)
- Publishing Network for Geoscientific & Environmental Data (4)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (75)
- Queensland University of Technology - ePrints Archive (144)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico da Universidade de Évora - Portugal (7)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (19)
- Repositório Institucional da Universidade de Aveiro - Portugal (5)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional da Universidade Federal de São Paulo - UNIFESP (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (72)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (3)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (2)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (23)
- Universidad Politécnica de Madrid (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (10)
- Universidade Metodista de São Paulo (1)
- Universitat de Girona, Spain (5)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (10)
- Université de Lausanne, Switzerland (7)
- Université de Montréal (1)
- Université de Montréal, Canada (10)
- Université Laval Mémoires et thèses électroniques (1)
- University of Michigan (12)
- University of Queensland eSpace - Australia (3)
- WestminsterResearch - UK (6)
Resumo:
For a given TCP flow, exogenous losses are those occurring on links other than the flow's bottleneck link. Exogenous losses are typically viewed as introducing undesirable "noise" into TCP's feedback control loop, leading to inefficient network utilization and potentially severe global unfairness. This has prompted much research on mechanisms for hiding such losses from end-points. In this paper, we show through analysis and simulations that low levels of exogenous losses are surprisingly beneficial in that they improve stability and convergence, without sacrificing efficiency. Based on this, we argue that exogenous loss awareness should be taken into account in any AQM design that aims to achieve global fairness. To that end, we propose an exogenous-loss aware Queue Management (XQM) that actively accounts for and leverages exogenous losses. We use an equation based approach to derive the quiescent loss rate for a connection based on the connection's profile and its global fair share. In contrast to other queue management techniques, XQM ensures that a connection sees its quiescent loss rate, not only by complementing already existing exogenous losses, but also by actively hiding exogenous losses, if necessary, to achieve global fairness. We establish the advantages of exogenous-loss awareness using extensive simulations in which, we contrast the performance of XQM to that of a host of traditional exogenous-loss unaware AQM techniques.