1 resultado para The Army Technology Center
em Boston University Digital Common
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (2)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- Adam Mickiewicz University Repository (1)
- Applied Math and Science Education Repository - Washington - USA (6)
- Aquatic Commons (20)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (13)
- Biblioteca Digital da Câmara dos Deputados (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (5)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (10)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (10)
- Boston University Digital Common (1)
- Brock University, Canada (12)
- Bulgarian Digital Mathematics Library at IMI-BAS (1)
- CaltechTHESIS (14)
- Cambridge University Engineering Department Publications Database (20)
- CentAUR: Central Archive University of Reading - UK (34)
- Chapman University Digital Commons - CA - USA (8)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (30)
- Clark Digital Commons--knowledge; creativity; research; and innovation of Clark University (2)
- Cochin University of Science & Technology (CUSAT), India (10)
- Coffee Science - Universidade Federal de Lavras (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (4)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Cornell: DigitalCommons@ILR (1)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (3)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (3)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons @ DU | University of Denver Research (1)
- Digital Commons at Florida International University (6)
- Digital Howard @ Howard University | Howard University Research (1)
- Digital Peer Publishing (2)
- DigitalCommons@The Texas Medical Center (90)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (5)
- Escola Superior de Educação de Paula Frassinetti (1)
- Greenwich Academic Literature Archive - UK (8)
- Harvard University (2)
- Helda - Digital Repository of University of Helsinki (8)
- Indian Institute of Science - Bangalore - Índia (31)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (1)
- Instituto Nacional de Saúde de Portugal (1)
- Instituto Politécnico do Porto, Portugal (3)
- Martin Luther Universitat Halle Wittenberg, Germany (1)
- Massachusetts Institute of Technology (3)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- National Center for Biotechnology Information - NCBI (8)
- Portal de Periódicos Eletrônicos da UFPB (1)
- Portal de Revistas Científicas Complutenses - Espanha (3)
- Publishing Network for Geoscientific & Environmental Data (13)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (46)
- Queensland University of Technology - ePrints Archive (77)
- Repositorio Académico de la Universidad Nacional de Costa Rica (1)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (13)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (2)
- Repositório Digital da Universidade Municipal de São Caetano do Sul - USCS (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (39)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (4)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (10)
- The Scholarly Commons | School of Hotel Administration; Cornell University Research (2)
- Universidad Autónoma de Nuevo León, Mexico (2)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (4)
- Universidad Politécnica de Madrid (5)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Rio Grande do Norte (UFRN) (4)
- Universitat de Girona, Spain (1)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (3)
- University of Connecticut - USA (2)
- University of Michigan (264)
- University of Queensland eSpace - Australia (6)
- University of Southampton, United Kingdom (1)
- University of Washington (1)
- WestminsterResearch - UK (1)
Resumo:
Memories in Adaptive Resonance Theory (ART) networks are based on matched patterns that focus attention on those portions of bottom-up inputs that match active top-down expectations. While this learning strategy has proved successful for both brain models and applications, computational examples show that attention to early critical features may later distort memory representations during online fast learning. For supervised learning, biased ARTMAP (bARTMAP) solves the problem of over-emphasis on early critical features by directing attention away from previously attended features after the system makes a predictive error. Small-scale, hand-computed analog and binary examples illustrate key model dynamics. Twodimensional simulation examples demonstrate the evolution of bARTMAP memories as they are learned online. Benchmark simulations show that featural biasing also improves performance on large-scale examples. One example, which predicts movie genres and is based, in part, on the Netflix Prize database, was developed for this project. Both first principles and consistent performance improvements on all simulation studies suggest that featural biasing should be incorporated by default in all ARTMAP systems. Benchmark datasets and bARTMAP code are available from the CNS Technology Lab Website: http://techlab.bu.edu/bART/.