2 resultados para Textual complexity for Romanian language
em Boston University Digital Common
Resumo:
The CIL compiler for core Standard ML compiles whole programs using a novel typed intermediate language (TIL) with intersection and union types and flow labels on both terms and types. The CIL term representation duplicates portions of the program where intersection types are introduced and union types are eliminated. This duplication makes it easier to represent type information and to introduce customized data representations. However, duplication incurs compile-time space costs that are potentially much greater than are incurred in TILs employing type-level abstraction or quantification. In this paper, we present empirical data on the compile-time space costs of using CIL as an intermediate language. The data shows that these costs can be made tractable by using sufficiently fine-grained flow analyses together with standard hash-consing techniques. The data also suggests that non-duplicating formulations of intersection (and union) types would not achieve significantly better space complexity.
Resumo:
For any q > 1, let MOD_q be a quantum gate that determines if the number of 1's in the input is divisible by q. We show that for any q,t > 1, MOD_q is equivalent to MOD_t (up to constant depth). Based on the case q=2, Moore has shown that quantum analogs of AC^(0), ACC[q], and ACC, denoted QAC^(0)_wf, QACC[2], QACC respectively, define the same class of operators, leaving q > 2 as an open question. Our result resolves this question, implying that QAC^(0)_wf = QACC[q] = QACC for all q. We also prove the first upper bounds for QACC in terms of related language classes. We define classes of languages EQACC, NQACC (both for arbitrary complex amplitudes) and BQACC (for rational number amplitudes) and show that they are all contained in TC^(0). To do this, we show that a TC^(0) circuit can keep track of the amplitudes of the state resulting from the application of a QACC operator using a constant width polynomial size tensor sum. In order to accomplish this, we also show that TC^(0) can perform iterated addition and multiplication in certain field extensions.