4 resultados para Technical schools

em Boston University Digital Common


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An investigation of 24 buildings in the Greater Boston Area revealed that one-third (8 of 24) contained caulking materials with polychlorinated biphenyl (PCB) content exceeding 50 ppm by weight, which is the U.S. Environmental Protection Agency (U.S. EPA) specified limit above which this material is considered to be PCB bulk product waste. These buildings included schools and other public buildings. In a university building where similar levels of PCB were found in caulking material, PCB levels in indoor air ranged from 111 to 393 ng/m3; and in dust taken from the building ventilation system, < 1 ppm to 81 ppm. In this building, the U.S. EPA mandated requirements for the removal and disposal of the PCB bulk product waste as well as for confirmatory sampling to ensure that the interior and exterior of the building were decontaminated. Although U.S. EPA regulations under the Toxic Substances Control Act stipulate procedures by which PCB-contaminated materials must be handled and disposed, the regulations apparently do not require that materials such as caulking be tested to determine its PCB content. This limited investigation strongly suggests that were this testing done, many buildings would be found to contain high levels of PCBs in the building materials and potentially in the building environment. The presence of PCBs in schools is of particular concern given evidence suggesting that PCBs are developmental toxins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This file contains a finding aid for the Bulletin of the American Schools of Oriental Research (BASOR) Collection. To access the collection, please contact the archivist (asorarch@bu.edu) at the American Schools of Oriental Research, located at Boston University.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accurate knowledge of traffic demands in a communication network enables or enhances a variety of traffic engineering and network management tasks of paramount importance for operational networks. Directly measuring a complete set of these demands is prohibitively expensive because of the huge amounts of data that must be collected and the performance impact that such measurements would impose on the regular behavior of the network. As a consequence, we must rely on statistical techniques to produce estimates of actual traffic demands from partial information. The performance of such techniques is however limited due to their reliance on limited information and the high amount of computations they incur, which limits their convergence behavior. In this paper we study a two-step approach for inferring network traffic demands. First we elaborate and evaluate a modeling approach for generating good starting points to be fed to iterative statistical inference techniques. We call these starting points informed priors since they are obtained using actual network information such as packet traces and SNMP link counts. Second we provide a very fast variant of the EM algorithm which extends its computation range, increasing its accuracy and decreasing its dependence on the quality of the starting point. Finally, we evaluate and compare alternative mechanisms for generating starting points and the convergence characteristics of our EM algorithm against a recently proposed Weighted Least Squares approach.