1 resultado para TOTAL SUCTION
em Boston University Digital Common
Filtro por publicador
- Repository Napier (1)
- Aberystwyth University Repository - Reino Unido (3)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (1)
- Aquatic Commons (30)
- Archive of European Integration (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (5)
- Biblioteca Digital da Câmara dos Deputados (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (23)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (13)
- Boston University Digital Common (1)
- Brock University, Canada (18)
- CaltechTHESIS (13)
- Cámara de Comercio de Bogotá, Colombia (2)
- Cambridge University Engineering Department Publications Database (26)
- CentAUR: Central Archive University of Reading - UK (57)
- Center for Jewish History Digital Collections (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (82)
- Cochin University of Science & Technology (CUSAT), India (3)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Dalarna University College Electronic Archive (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (4)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Duke University (11)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (5)
- FAUBA DIGITAL: Repositorio institucional científico y académico de la Facultad de Agronomia de la Universidad de Buenos Aires (2)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (1)
- Greenwich Academic Literature Archive - UK (4)
- Helda - Digital Repository of University of Helsinki (7)
- Indian Institute of Science - Bangalore - Índia (167)
- Infoteca EMBRAPA (2)
- Instituto Politécnico do Porto, Portugal (4)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (26)
- Ministerio de Cultura, Spain (36)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (16)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (108)
- Queensland University of Technology - ePrints Archive (108)
- RDBU - Repositório Digital da Biblioteca da Unisinos (3)
- Repositório digital da Fundação Getúlio Vargas - FGV (29)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (4)
- Repositório Institucional da Universidade de Aveiro - Portugal (1)
- Repositorio Institucional de la Universidad Nacional Agraria (4)
- Repositorio Institucional de la Universidad Pública de Navarra - Espanha (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (17)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- School of Medicine, Washington University, United States (4)
- Universidad Autónoma de Nuevo León, Mexico (13)
- Universidad del Rosario, Colombia (13)
- Universidade Federal do Rio Grande do Norte (UFRN) (5)
- Universitat de Girona, Spain (1)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (3)
- Université de Lausanne, Switzerland (8)
- Université de Montréal, Canada (10)
- University of Queensland eSpace - Australia (1)
- WestminsterResearch - UK (2)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
We give an explicit and easy-to-verify characterization for subsets in finite total orders (infinitely many of them in general) to be uniformly definable by a first-order formula. From this characterization we derive immediately that Beth's definability theorem does not hold in any class of finite total orders, as well as that McColm's first conjecture is true for all classes of finite total orders. Another consequence is a natural 0-1 law for definable subsets on finite total orders expressed as a statement about the possible densities of first-order definable subsets.