2 resultados para Superconducting Qubits

em Boston University Digital Common


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigate numerically the ground state phase diagram of the one-dimensional extended Hubbard model, including an on--site interaction U and a nearest--neighbor interaction V. We focus on the ground state phases of the model in the V >> U region, where previous studies have suggested the possibility of dominant superconducting pairing fluctuations before the system phase separates at a critical value V=V_PS. Using quantum Monte Carlo methods on lattices much larger than in previous Lanczos diagonalization studies, we determine the boundary of phase separation, the Luttinger Liquid correlation exponent K_rho, and other correlation functions in this region. We find that phase separation occurs for V significantly smaller than previously reported. In addition, for negative U, we find that a uniform state re-enters from phase separation as the electron density is increased towards half filling. For V < V_PS, our results show that superconducting fluctuations are not dominant. The system behaves asymptotically as a Luttinger Liquid with K_rho < 1, but we also find strong low-energy (but gapped) charge-density fluctuations at a momentum not expected for a standard Luttinger Liquid.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a technique to derive depth lower bounds for quantum circuits. The technique is based on the observation that in circuits without ancillae, only a few input states can set all the control qubits of a Toffoli gate to 1. This can be used to selectively remove large Toffoli gates from a quantum circuit while keeping the cumulative error low. We use the technique to give another proof that parity cannot be computed by constant depth quantum circuits without ancillæ.