1 resultado para Sui generis

em Boston University Digital Common


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acousto-optic imaging (AOI) in optically diffuse media is a hybrid imaging modality in which a focused ultrasound beam is used to locally phase modulate light inside of turbid media. The modulated optical field carries with it information about the optical properties in the region where the light and sound interact. The motivation for the development of AOI systems is to measure optical properties at large depths within biological tissue with high spatial resolution. A photorefractive crystal (PRC) based interferometry system is developed for the detection of phase modulated light in AOI applications. Two-wave mixing in the PRC creates a reference beam that is wavefront matched to the modulated optical field collected from the specimen. The phase modulation is converted to an intensity modulation at the optical detector when these two fields interfere. The interferometer has a high optical etendue, making it well suited for AOI where the scattered light levels are typically low. A theoretical model for the detection of acoustically induced phase modulation in turbid media using PRC based interferometry is detailed. An AOI system, using a single element focused ultrasound transducer to pump the AO interaction and the PRC based detection system, is fabricated and tested on tissue mimicking phantoms. It is found that the system has sufficient sensitivity to detect broadband AO signals generated using pulsed ultrasound, allowing for AOI at low time averaged ultrasound output levels. The spatial resolution of the AO imaging system is studied as a function of the ultrasound pulse parameters. A theoretical model of light propagation in turbid media is used to explore the dependence of the AO response on the experimental geometry, light collection aperture, and target optical properties. Finally, a multimodal imaging system combining pulsed AOI and conventional B- mode ultrasound imaging is developed. B-mode ultrasound and AO images of targets embedded in both highly diffuse phantoms and biological tissue ex vivo are obtained, and millimeter resolution is demonstrated in three dimensions. The AO images are intrinsically co-registered with the B-mode ultrasound images. The results suggest that AOI can be used to supplement conventional B-mode ultrasound imaging with optical information.