5 resultados para Subunit-specific Potentiation

em Boston University Digital Common


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many multi-camera vision systems the effect of camera locations on the task-specific quality of service is ignored. Researchers in Computational Geometry have proposed elegant solutions for some sensor location problem classes. Unfortunately, these solutions utilize unrealistic assumptions about the cameras' capabilities that make these algorithms unsuitable for many real-world computer vision applications: unlimited field of view, infinite depth of field, and/or infinite servo precision and speed. In this paper, the general camera placement problem is first defined with assumptions that are more consistent with the capabilities of real-world cameras. The region to be observed by cameras may be volumetric, static or dynamic, and may include holes that are caused, for instance, by columns or furniture in a room that can occlude potential camera views. A subclass of this general problem can be formulated in terms of planar regions that are typical of building floorplans. Given a floorplan to be observed, the problem is then to efficiently compute a camera layout such that certain task-specific constraints are met. A solution to this problem is obtained via binary optimization over a discrete problem space. In preliminary experiments the performance of the resulting system is demonstrated with different real floorplans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In many multi-camera vision systems the effect of camera locations on the task-specific quality of service is ignored. Researchers in Computational Geometry have proposed elegant solutions for some sensor location problem classes. Unfortunately, these solutions utilize unrealistic assumptions about the cameras' capabilities that make these algorithms unsuitable for many real-world computer vision applications: unlimited field of view, infinite depth of field, and/or infinite servo precision and speed. In this paper, the general camera placement problem is first defined with assumptions that are more consistent with the capabilities of real-world cameras. The region to be observed by cameras may be volumetric, static or dynamic, and may include holes that are caused, for instance, by columns or furniture in a room that can occlude potential camera views. A subclass of this general problem can be formulated in terms of planar regions that are typical of building floorplans. Given a floorplan to be observed, the problem is then to efficiently compute a camera layout such that certain task-specific constraints are met. A solution to this problem is obtained via binary optimization over a discrete problem space. In experiments the performance of the resulting system is demonstrated with different real floorplans.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper focuses on an efficient user-level method for the deployment of application-specific extensions, using commodity operating systems and hardware. A sandboxing technique is described that supports multiple extensions within a shared virtual address space. Applications can register sandboxed code with the system, so that it may be executed in the context of any process. Such code may be used to implement generic routines and handlers for a class of applications, or system service extensions that complement the functionality of the core kernel. Using our approach, application-specific extensions can be written like conventional user-level code, utilizing libraries and system calls, with the advantage that they may be executed without the traditional costs of scheduling and context-switching between process-level protection domains. No special hardware support such as segmentation or tagged translation look-aside buffers (TLBs) is required. Instead, our ``user-level sandboxing'' mechanism requires only paged-based virtual memory support, given that sandboxed extensions are either written by a trusted source or are guaranteed to be memory-safe (e.g., using type-safe languages). Using a fast method of upcalls, we show how our mechanism provides significant performance improvements over traditional methods of invoking user-level services. As an application of our approach, we have implemented a user-level network subsystem that avoids data copying via the kernel and, in many cases, yields far greater network throughput than kernel-level approaches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Animals are motivated to choose environmental options that can best satisfy current needs. To explain such choices, this paper introduces the MOTIVATOR (Matching Objects To Internal Values Triggers Option Revaluations) neural model. MOTIVATOR describes cognitiveemotional interactions between higher-order sensory cortices and an evaluative neuraxis composed of the hypothalamus, amygdala, and orbitofrontal cortex. Given a conditioned stimulus (CS), the model amygdala and lateral hypothalamus interact to calculate the expected current value of the subjective outcome that the CS predicts, constrained by the current state of deprivation or satiation. The amygdala relays the expected value information to orbitofrontal cells that receive inputs from anterior inferotemporal cells, and medial orbitofrontal cells that receive inputs from rhinal cortex. The activations of these orbitofrontal cells code the subjective values of objects. These values guide behavioral choices. The model basal ganglia detect errors in CS-specific predictions of the value and timing of rewards. Excitatory inputs from the pedunculopontine nucleus interact with timed inhibitory inputs from model striosomes in the ventral striatum to regulate dopamine burst and dip responses from cells in the substantia nigra pars compacta and ventral tegmental area. Learning in cortical and striatal regions is strongly modulated by dopamine. The model is used to address tasks that examine food-specific satiety, Pavlovian conditioning, reinforcer devaluation, and simultaneous visual discrimination. Model simulations successfully reproduce discharge dynamics of known cell types, including signals that predict saccadic reaction times and CS-dependent changes in systolic blood pressure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies of perceptual learning have focused on aspects of learning that are related to early stages of sensory processing. However, conclusions that perceptual learning results in low-level sensory plasticity are of great controversy, largely because such learning can often be attributed to plasticity in later stages of sensory processing or in the decision processes. To address this controversy, we developed a novel random dot motion (RDM) stimulus to target motion cells selective to contrast polarity, by ensuring the motion direction information arises only from signal dot onsets and not their offsets, and used these stimuli in conjunction with the paradigm of task-irrelevant perceptual learning (TIPL). In TIPL, learning is achieved in response to a stimulus by subliminally pairing that stimulus with the targets of an unrelated training task. In this manner, we are able to probe learning for an aspect of motion processing thought to be a function of directional V1 simple cells with a learning procedure that dissociates the learned stimulus from the decision processes relevant to the training task. Our results show learning for the exposed contrast polarity and that this learning does not transfer to the unexposed contrast polarity. These results suggest that TIPL for motion stimuli may occur at the stage of directional V1 simple cells.