3 resultados para Storage Contention
em Boston University Digital Common
Resumo:
Parallel computing on a network of workstations can saturate the communication network, leading to excessive message delays and consequently poor application performance. We examine empirically the consequences of integrating a flow control protocol, called Warp control [Par93], into Mermera, a software shared memory system that supports parallel computing on distributed systems [HS93]. For an asynchronous iterative program that solves a system of linear equations, our measurements show that Warp succeeds in stabilizing the network's behavior even under high levels of contention. As a result, the application achieves a higher effective communication throughput, and a reduced completion time. In some cases, however, Warp control does not achieve the performance attainable by fixed size buffering when using a statically optimal buffer size. Our use of Warp to regulate the allocation of network bandwidth emphasizes the possibility for integrating it with the allocation of other resources, such as CPU cycles and disk bandwidth, so as to optimize overall system throughput, and enable fully-shared execution of parallel programs.
Resumo:
A working memory model is described that is capable of storing and recalling arbitrary temporal sequences of events, including repeated items. These memories encode the invariant temporal order of sequential events that may be presented at widely differing speeds, durations, and interstimulus intervals. This temporal order code is designed to enable all possible groupings of sequential events to be stably learned and remembered in real time, even as new events perturb the system.
Resumo:
Neural network models of working memory, called Sustained Temporal Order REcurrent (STORE) models, are described. They encode the invariant temporal order of sequential events in short term memory (STM) in a way that mimics cognitive data about working memory, including primacy, recency, and bowed order and error gradients. As new items are presented, the pattern of previously stored items is invariant in the sense that, relative activations remain constant through time. This invariant temporal order code enables all possible groupings of sequential events to be stably learned and remembered in real time, even as new events perturb the system. Such a competence is needed to design self-organizing temporal recognition and planning systems in which any subsequence of events may need to be categorized in order to to control and predict future behavior or external events. STORE models show how arbitrary event sequences may be invariantly stored, including repeated events. A preprocessor interacts with the working memory to represent event repeats in spatially separate locations. It is shown why at least two processing levels are needed to invariantly store events presented with variable durations and interstimulus intervals. It is also shown how network parameters control the type and shape of primacy, recency, or bowed temporal order gradients that will be stored.