9 resultados para Stable manifold

em Boston University Digital Common


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study the impact of heterogeneity of nodes, in terms of their energy, in wireless sensor networks that are hierarchically clustered. In these networks some of the nodes become cluster heads, aggregate the data of their cluster members and transmit it to the sink. We assume that a percentage of the population of sensor nodes is equipped with additional energy resources-this is a source of heterogeneity which may result from the initial setting or as the operation of the network evolves. We also assume that the sensors are randomly (uniformly) distributed and are not mobile, the coordinates of the sink and the dimensions of the sensor field are known. We show that the behavior of such sensor networks becomes very unstable once the first node dies, especially in the presence of node heterogeneity. Classical clustering protocols assume that all the nodes are equipped with the same amount of energy and as a result, they can not take full advantage of the presence of node heterogeneity. We propose SEP, a heterogeneous-aware protocol to prolong the time interval before the death of the first node (we refer to as stability period), which is crucial for many applications where the feedback from the sensor network must be reliable. SEP is based on weighted election probabilities of each node to become cluster head according to the remaining energy in each node. We show by simulation that SEP always prolongs the stability period compared to (and that the average throughput is greater than) the one obtained using current clustering protocols. We conclude by studying the sensitivity of our SEP protocol to heterogeneity parameters capturing energy imbalance in the network. We found that SEP yields longer stability region for higher values of extra energy brought by more powerful nodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this work is to learn a parsimonious and informative representation for high-dimensional time series. Conceptually, this comprises two distinct yet tightly coupled tasks: learning a low-dimensional manifold and modeling the dynamical process. These two tasks have a complementary relationship as the temporal constraints provide valuable neighborhood information for dimensionality reduction and conversely, the low-dimensional space allows dynamics to be learnt efficiently. Solving these two tasks simultaneously allows important information to be exchanged mutually. If nonlinear models are required to capture the rich complexity of time series, then the learning problem becomes harder as the nonlinearities in both tasks are coupled. The proposed solution approximates the nonlinear manifold and dynamics using piecewise linear models. The interactions among the linear models are captured in a graphical model. By exploiting the model structure, efficient inference and learning algorithms are obtained without oversimplifying the model of the underlying dynamical process. Evaluation of the proposed framework with competing approaches is conducted in three sets of experiments: dimensionality reduction and reconstruction using synthetic time series, video synthesis using a dynamic texture database, and human motion synthesis, classification and tracking on a benchmark data set. In all experiments, the proposed approach provides superior performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interdomain routing on the Internet is performed using route preference policies specified independently, and arbitrarily by each Autonomous System in the network. These policies are used in the border gateway protocol (BGP) by each AS when selecting next-hop choices for routes to each destination. Conflicts between policies used by different ASs can lead to routing instabilities that, potentially, cannot be resolved no matter how long BGP is run. The Stable Paths Problem (SPP) is an abstract graph theoretic model of the problem of selecting nexthop routes for a destination. A stable solution to the problem is a set of next-hop choices, one for each AS, that is compatible with the policies of each AS. In a stable solution each AS has selected its best next-hop given that the next-hop choices of all neighbors are fixed. BGP can be viewed as a distributed algorithm for solving SPP. In this report we consider the stable paths problem, as well as a family of restricted variants of the stable paths problem, which we call F stable paths problems. We show that two very simple variants of the stable paths problem are also NP-complete. In addition we show that for networks with a DAG topology, there is an efficient centralized algorithm to solve the stable paths problem, and that BGP always efficiently converges to a stable solution on such networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The goal of this work is to learn a parsimonious and informative representation for high-dimensional time series. Conceptually, this comprises two distinct yet tightly coupled tasks: learning a low-dimensional manifold and modeling the dynamical process. These two tasks have a complementary relationship as the temporal constraints provide valuable neighborhood information for dimensionality reduction and conversely, the low-dimensional space allows dynamics to be learnt efficiently. Solving these two tasks simultaneously allows important information to be exchanged mutually. If nonlinear models are required to capture the rich complexity of time series, then the learning problem becomes harder as the nonlinearities in both tasks are coupled. The proposed solution approximates the nonlinear manifold and dynamics using piecewise linear models. The interactions among the linear models are captured in a graphical model. The model structure setup and parameter learning are done using a variational Bayesian approach, which enables automatic Bayesian model structure selection, hence solving the problem of over-fitting. By exploiting the model structure, efficient inference and learning algorithms are obtained without oversimplifying the model of the underlying dynamical process. Evaluation of the proposed framework with competing approaches is conducted in three sets of experiments: dimensionality reduction and reconstruction using synthetic time series, video synthesis using a dynamic texture database, and human motion synthesis, classification and tracking on a benchmark data set. In all experiments, the proposed approach provides superior performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Fuzzy ART system introduced herein incorporates computations from fuzzy set theory into ART 1. For example, the intersection (n) operator used in ART 1 learning is replaced by the MIN operator (A) of fuzzy set theory. Fuzzy ART reduces to ART 1 in response to binary input vectors, but can also learn stable categories in response to analog input vectors. In particular, the MIN operator reduces to the intersection operator in the binary case. Learning is stable because all adaptive weights can only decrease in time. A preprocessing step, called complement coding, uses on-cell and off-cell responses to prevent category proliferation. Complement coding normalizes input vectors while preserving the amplitudes of individual feature activations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A Fuzzy ART model capable of rapid stable learning of recognition categories in response to arbitrary sequences of analog or binary input patterns is described. Fuzzy ART incorporates computations from fuzzy set theory into the ART 1 neural network, which learns to categorize only binary input patterns. The generalization to learning both analog and binary input patterns is achieved by replacing appearances of the intersection operator (n) in AHT 1 by the MIN operator (Λ) of fuzzy set theory. The MIN operator reduces to the intersection operator in the binary case. Category proliferation is prevented by normalizing input vectors at a preprocessing stage. A normalization procedure called complement coding leads to a symmetric theory in which the MIN operator (Λ) and the MAX operator (v) of fuzzy set theory play complementary roles. Complement coding uses on-cells and off-cells to represent the input pattern, and preserves individual feature amplitudes while normalizing the total on-cell/off-cell vector. Learning is stable because all adaptive weights can only decrease in time. Decreasing weights correspond to increasing sizes of category "boxes". Smaller vigilance values lead to larger category boxes. Learning stops when the input space is covered by boxes. With fast learning and a finite input set of arbitrary size and composition, learning stabilizes after just one presentation of each input pattern. A fast-commit slow-recode option combines fast learning with a forgetting rule that buffers system memory against noise. Using this option, rare events can be rapidly learned, yet previously learned memories are not rapidly erased in response to statistically unreliable input fluctuations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, two methods for constructing systems of ordinary differential equations realizing any fixed finite set of equilibria in any fixed finite dimension are introduced; no spurious equilibria are possible for either method. By using the first method, one can construct a system with the fewest number of equilibria, given a fixed set of attractors. Using a strict Lyapunov function for each of these differential equations, a large class of systems with the same set of equilibria is constructed. A method of fitting these nonlinear systems to trajectories is proposed. In addition, a general method which will produce an arbitrary number of periodic orbits of shapes of arbitrary complexity is also discussed. A more general second method is given to construct a differential equation which converges to a fixed given finite set of equilibria. This technique is much more general in that it allows this set of equilibria to have any of a large class of indices which are consistent with the Morse Inequalities. It is clear that this class is not universal, because there is a large class of additional vector fields with convergent dynamics which cannot be constructed by the above method. The easiest way to see this is to enumerate the set of Morse indices which can be obtained by the above method and compare this class with the class of Morse indices of arbitrary differential equations with convergent dynamics. The former set of indices are a proper subclass of the latter, therefore, the above construction cannot be universal. In general, it is a difficult open problem to construct a specific example of a differential equation with a given fixed set of equilibria, permissible Morse indices, and permissible connections between stable and unstable manifolds. A strict Lyapunov function is given for this second case as well. This strict Lyapunov function as above enables construction of a large class of examples consistent with these more complicated dynamics and indices. The determination of all the basins of attraction in the general case for these systems is also difficult and open.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We wish to construct a realization theory of stable neural networks and use this theory to model the variety of stable dynamics apparent in natural data. Such a theory should have numerous applications to constructing specific artificial neural networks with desired dynamical behavior. The networks used in this theory should have well understood dynamics yet be as diverse as possible to capture natural diversity. In this article, I describe a parameterized family of higher order, gradient-like neural networks which have known arbitrary equilibria with unstable manifolds of known specified dimension. Moreover, any system with hyperbolic dynamics is conjugate to one of these systems in a neighborhood of the equilibrium points. Prior work on how to synthesize attractors using dynamical systems theory, optimization, or direct parametric. fits to known stable systems, is either non-constructive, lacks generality, or has unspecified attracting equilibria. More specifically, We construct a parameterized family of gradient-like neural networks with a simple feedback rule which will generate equilibrium points with a set of unstable manifolds of specified dimension. Strict Lyapunov functions and nested periodic orbits are obtained for these systems and used as a method of synthesis to generate a large family of systems with the same local dynamics. This work is applied to show how one can interpolate finite sets of data, on nested periodic orbits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces a new class of predictive ART architectures, called Adaptive Resonance Associative Map (ARAM) which performs rapid, yet stable heteroassociative learning in real time environment. ARAM can be visualized as two ART modules sharing a single recognition code layer. The unit for recruiting a recognition code is a pattern pair. Code stabilization is ensured by restricting coding to states where resonances are reached in both modules. Simulation results have shown that ARAM is capable of self-stabilizing association of arbitrary pattern pairs of arbitrary complexity appearing in arbitrary sequence by fast learning in real time environment. Due to the symmetrical network structure, associative recall can be performed in both directions.