6 resultados para Special operations (Military science)

em Boston University Digital Common


Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: In a 1994 Ninth Circuit decision on the remand of Daubert v. Merrell Dow Pharmaceuticals, Inc., Judge Alex Kosinski wrote that science done for the purpose of litigation should be subject to more stringent standards of admissibility than other science. OBJECTIVES: We analyze this proposition by considering litigation-generated science as a subset of science involving conflict of interest. DISCUSSION: Judge Kosinski's formulation suggests there may be reasons to treat science involving conflict of interest differently but raises questions about whether litigation-generated science should be singled out. In particular we discuss the similar problems raised by strategically motivated science done in anticipation of possible future litigation or otherwise designed to benefit the sponsor and ask what special treatment, if any, should be given to science undertaken to support existing or potential future litigation. CONCLUSION: The problems with litigation-generated science are not special. On the contrary, they are very general and apply to much or most science that is relevant and reliable in the courtroom setting.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Generic object-oriented programming languages combine parametric polymorphism and nominal subtype polymorphism, thereby providing better data abstraction, greater code reuse, and fewer run-time errors. However, most generic object-oriented languages provide a straightforward combination of the two kinds of polymorphism, which prevents the expression of advanced type relationships. Furthermore, most generic object-oriented languages have a type-erasure semantics: instantiations of type parameters are not available at run time, and thus may not be used by type-dependent operations. This dissertation shows that two features, which allow the expression of many advanced type relationships, can be added to a generic object-oriented programming language without type erasure: 1. type variables that are not parameters of the class that declares them, and 2. extension that is dependent on the satisfiability of one or more constraints. We refer to the first feature as hidden type variables and the second feature as conditional extension. Hidden type variables allow: covariance and contravariance without variance annotations or special type arguments such as wildcards; a single type to extend, and inherit methods from, infinitely many instantiations of another type; a limited capacity to augment the set of superclasses after that class is defined; and the omission of redundant type arguments. Conditional extension allows the properties of a collection type to be dependent on the properties of its element type. This dissertation describes the semantics and implementation of hidden type variables and conditional extension. A sound type system is presented. In addition, a sound and terminating type checking algorithm is presented. Although designed for the Fortress programming language, hidden type variables and conditional extension can be incorporated into other generic object-oriented languages. Many of the same problems would arise, and solutions analogous to those we present would apply.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ACT is compared with a particular type of connectionist model that cannot handle symbols and use non-biological operations that cannot learn in real time. This focus continues an unfortunate trend of straw man "debates" in cognitive science. Adaptive Resonance Theory, or ART, neural models of cognition can handle both symbols and sub-symbolic representations, and meets the Newell criteria at least as well as these models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article develops the Synchronous Matching Adaptive Resonance Theory (SMART) neural model to explain how the brain may coordinate multiple levels of thalamocortical and corticocortical processing to rapidly learn, and stably remember, important information about a changing world. The model clarifies how bottom-up and top-down processes work together to realize this goal, notably how processes of learning, expectation, attention, resonance, and synchrony are coordinated. The model hereby clarifies, for the first time, how the following levels of brain organization coexist to realize cognitive processing properties that regulate fast learning and stable memory of brain representations: single cell properties, such as spiking dynamics, spike-timing-dependent plasticity (STDP), and acetylcholine modulation; detailed laminar thalamic and cortical circuit designs and their interactions; aggregate cell recordings, such as current-source densities and local field potentials; and single cell and large-scale inter-areal oscillations in the gamma and beta frequency domains. In particular, the model predicts how laminar circuits of multiple cortical areas interact with primary and higher-order specific thalamic nuclei and nonspecific thalamic nuclei to carry out attentive visual learning and information processing. The model simulates how synchronization of neuronal spiking occurs within and across brain regions, and triggers STDP. Matches between bottom-up adaptively filtered input patterns and learned top-down expectations cause gamma oscillations that support attention, resonance, and learning. Mismatches inhibit learning while causing beta oscillations during reset and hypothesis testing operations that are initiated in the deeper cortical layers. The generality of learned recognition codes is controlled by a vigilance process mediated by acetylcholine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article introduces a new neural network architecture, called ARTMAP, that autonomously learns to classify arbitrarily many, arbitrarily ordered vectors into recognition categories based on predictive success. This supervised learning system is built up from a pair of Adaptive Resonance Theory modules (ARTa and ARTb) that are capable of self-organizing stable recognition categories in response to arbitrary sequences of input patterns. During training trials, the ARTa module receives a stream {a^(p)} of input patterns, and ARTb receives a stream {b^(p)} of input patterns, where b^(p) is the correct prediction given a^(p). These ART modules are linked by an associative learning network and an internal controller that ensures autonomous system operation in real time. During test trials, the remaining patterns a^(p) are presented without b^(p), and their predictions at ARTb are compared with b^(p). Tested on a benchmark machine learning database in both on-line and off-line simulations, the ARTMAP system learns orders of magnitude more quickly, efficiently, and accurately than alternative algorithms, and achieves 100% accuracy after training on less than half the input patterns in the database. It achieves these properties by using an internal controller that conjointly maximizes predictive generalization and minimizes predictive error by linking predictive success to category size on a trial-by-trial basis, using only local operations. This computation increases the vigilance parameter ρa of ARTa by the minimal amount needed to correct a predictive error at ARTb· Parameter ρa calibrates the minimum confidence that ARTa must have in a category, or hypothesis, activated by an input a^(p) in order for ARTa to accept that category, rather than search for a better one through an automatically controlled process of hypothesis testing. Parameter ρa is compared with the degree of match between a^(p) and the top-down learned expectation, or prototype, that is read-out subsequent to activation of an ARTa category. Search occurs if the degree of match is less than ρa. ARTMAP is hereby a type of self-organizing expert system that calibrates the selectivity of its hypotheses based upon predictive success. As a result, rare but important events can be quickly and sharply distinguished even if they are similar to frequent events with different consequences. Between input trials ρa relaxes to a baseline vigilance pa When ρa is large, the system runs in a conservative mode, wherein predictions are made only if the system is confident of the outcome. Very few false-alarm errors then occur at any stage of learning, yet the system reaches asymptote with no loss of speed. Because ARTMAP learning is self stabilizing, it can continue learning one or more databases, without degrading its corpus of memories, until its full memory capacity is utilized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A dynamic distributed model is presented that reproduces the dynamics of a wide range of varied battle scenarios with a general and abstract representation. The model illustrates the rich dynamic behavior that can be achieved from a simple generic model.