6 resultados para Southwell Friendly Institution.
em Boston University Digital Common
Resumo:
http://www.archive.org/details/missionasfrontie00boltrich
Resumo:
The Internet has brought unparalleled opportunities for expanding availability of research by bringing down economic and physical barriers to sharing. The digitally networked environment promises to democratize access, carry knowledge beyond traditional research niches, accelerate discovery, encourage new and interdisciplinary approaches to ever more complex research challenges, and enable new computational research strategies. However, despite these opportunities for increasing access to knowledge, the prices of scholarly journals have risen sharply over the past two decades, often forcing libraries to cancel subscriptions. Today even the wealthiest institutions cannot afford to sustain all of the journals needed by their faculties and students. To take advantage of the opportunities created by the Internet and to further their mission of creating, preserving, and disseminating knowledge, many academic institutions are taking steps to capture the benefits of more open research sharing. Colleges and universities have built digital repositories to preserve and distribute faculty scholarly articles and other research outputs. Many individual authors have taken steps to retain the rights they need, under copyright law, to allow their work to be made freely available on the Internet and in their institutionâ s repository. And, faculties at some institutions have adopted resolutions endorsing more open access to scholarly articles. Most recently, on February 12, 2008, the Faculty of Arts and Sciences (FAS) at Harvard University took a landmark step. The faculty voted to adopt a policy requiring that faculty authors send an electronic copy of their scholarly articles to the universityâ s digital repository and that faculty authors automatically grant copyright permission to the university to archive and to distribute these articles unless a faculty member has waived the policy for a particular article. Essentially, the faculty voted to make open access to the results of their published journal articles the default policy for the Faculty of Arts and Sciences of Harvard University. As of March 2008, a proposal is also under consideration in the University of California system by which faculty authors would commit routinely to grant copyright permission to the university to make copies of the facultyâ s scholarly work openly accessible over the Internet. Inspired by the example set by the Harvard faculty, this White Paper is addressed to the faculty and administrators of academic institutions who support equitable access to scholarly research and knowledge, and who believe that the institution can play an important role as steward of the scholarly literature produced by its faculty. This paper discusses both the motivation and the process for establishing a binding institutional policy that automatically grants a copyright license from each faculty member to permit deposit of his or her peer-reviewed scholarly articles in institutional repositories, from which the works become available for others to read and cite.
Resumo:
With the increased use of "Virtual Machines" (VMs) as vehicles that isolate applications running on the same host, it is necessary to devise techniques that enable multiple VMs to share underlying resources both fairly and efficiently. To that end, one common approach is to deploy complex resource management techniques in the hosting infrastructure. Alternately, in this paper, we advocate the use of self-adaptation in the VMs themselves based on feedback about resource usage and availability. Consequently, we define a "Friendly" VM (FVM) to be a virtual machine that adjusts its demand for system resources, so that they are both efficiently and fairly allocated to competing FVMs. Such properties are ensured using one of many provably convergent control rules, such as AIMD. By adopting this distributed application-based approach to resource management, it is not necessary to make assumptions about the underlying resources nor about the requirements of FVMs competing for these resources. To demonstrate the elegance and simplicity of our approach, we present a prototype implementation of our FVM framework in User-Mode Linux (UML)-an implementation that consists of less than 500 lines of code changes to UML. We present an analytic, control-theoretic model of FVM adaptation, which establishes convergence and fairness properties. These properties are also backed up with experimental results using our prototype FVM implementation.
Resumo:
The increased diversity of Internet application requirements has spurred recent interests in flexible congestion control mechanisms. Window-based congestion control schemes use increase rules to probe available bandwidth, and decrease rules to back off when congestion is detected. The parameterization of these control rules is done so as to ensure that the resulting protocol is TCP-friendly in terms of the relationship between throughput and packet loss rate. In this paper, we propose a novel window-based congestion control algorithm called SIMD (Square-Increase/Multiplicative-Decrease). Contrary to previous memory-less controls, SIMD utilizes history information in its control rules. It uses multiplicative decrease but the increase in window size is in proportion to the square of the time elapsed since the detection of the last loss event. Thus, SIMD can efficiently probe available bandwidth. Nevertheless, SIMD is TCP-friendly as well as TCP-compatible under RED, and it has much better convergence behavior than TCP-friendly AIMD and binomial algorithms proposed recently.
Resumo:
The increased diversity of Internet application requirements has spurred recent interests in transport protocols with flexible transmission controls. In window-based congestion control schemes, increase rules determine how to probe available bandwidth, whereas decrease rules determine how to back off when losses due to congestion are detected. The parameterization of these control rules is done so as to ensure that the resulting protocol is TCP-friendly in terms of the relationship between throughput and loss rate. In this paper, we define a new spectrum of window-based congestion control algorithms that are TCP-friendly as well as TCP-compatible under RED. Contrary to previous memory-less controls, our algorithms utilize history information in their control rules. Our proposed algorithms have two salient features: (1) They enable a wider region of TCP-friendliness, and thus more flexibility in trading off among smoothness, aggressiveness, and responsiveness; and (2) they ensure a faster convergence to fairness under a wide range of system conditions. We demonstrate analytically and through extensive ns simulations the steady-state and transient behaviors of several instances of this new spectrum of algorithms. In particular, SIMD is one instance in which the congestion window is increased super-linearly with time since the detection of the last loss. Compared to recently proposed TCP-friendly AIMD and binomial algorithms, we demonstrate the superiority of SIMD in: (1) adapting to sudden increases in available bandwidth, while maintaining competitive smoothness and responsiveness; and (2) rapidly converging to fairness and efficiency.
Resumo:
The increasing diversity of Internet application requirements has spurred recent interest in transport protocols with flexible transmission controls. In window-based congestion control schemes, increase rules determine how to probe available bandwidth, whereas decrease rules determine how to back off when losses due to congestion are detected. The control rules are parameterized so as to ensure that the resulting protocol is TCP-friendly in terms of the relationship between throughput and loss rate. This paper presents a comprehensive study of a new spectrum of window-based congestion controls, which are TCP-friendly as well as TCP-compatible under RED. Our controls utilize history information in their control rules. By doing so, they improve the transient behavior, compared to recently proposed slowly-responsive congestion controls such as general AIMD and binomial controls. Our controls can achieve better tradeoffs among smoothness, aggressiveness, and responsiveness, and they can achieve faster convergence. We demonstrate analytically and through extensive ns simulations the steady-state and transient behavior of several instances of this new spectrum.