5 resultados para Skin lesions

em Boston University Digital Common


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A worker developed angiosarcoma, porphyria cutanea tarda, and skin lesions characteristic of mild chloracne. About 10 years earlier he had been employed at a truck terminal in Saint Louis, Missouri, at a time when it was sprayed with waste oil contaminated with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). The occurrence of these three rare conditions in a single exposed worker supports the aetiological relation between environmental exposure to TCDD and the subsequent development of soft tissue sarcoma and porphyria cutanea tarda.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel approach for real-time skin segmentation in video sequences is described. The approach enables reliable skin segmentation despite wide variation in illumination during tracking. An explicit second order Markov model is used to predict evolution of the skin-color (HSV) histogram over time. Histograms are dynamically updated based on feedback from the current segmentation and predictions of the Markov model. The evolution of the skin-color distribution at each frame is parameterized by translation, scaling and rotation in color space. Consequent changes in geometric parameterization of the distribution are propagated by warping and resampling the histogram. The parameters of the discrete-time dynamic Markov model are estimated using Maximum Likelihood Estimation, and also evolve over time. The accuracy of the new dynamic skin color segmentation algorithm is compared to that obtained via a static color model. Segmentation accuracy is evaluated using labeled ground-truth video sequences taken from staged experiments and popular movies. An overall increase in segmentation accuracy of up to 24% is observed in 17 out of 21 test sequences. In all but one case the skin-color classification rates for our system were higher, with background classification rates comparable to those of the static segmentation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel approach for real-time skin segmentation in video sequences is described. The approach enables reliable skin segmentation despite wide variation in illumination during tracking. An explicit second order Markov model is used to predict evolution of the skin color (HSV) histogram over time. Histograms are dynamically updated based on feedback from the current segmentation and based on predictions of the Markov model. The evolution of the skin color distribution at each frame is parameterized by translation, scaling and rotation in color space. Consequent changes in geometric parameterization of the distribution are propagated by warping and re-sampling the histogram. The parameters of the discrete-time dynamic Markov model are estimated using Maximum Likelihood Estimation, and also evolve over time. Quantitative evaluation of the method was conducted on labeled ground-truth video sequences taken from popular movies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A neural model is presented that explains how outcome-specific learning modulates affect, decision-making and Pavlovian conditioned approach responses. The model addresses how brain regions responsible for affective learning and habit learning interact, and answers a central question: What are the relative contributions of the amygdala and orbitofrontal cortex to emotion and behavior? In the model, the amygdala calculates outcome value while the orbitofrontal cortex influences attention and conditioned responding by assigning value information to stimuli. Model simulations replicate autonomic, electrophysiological, and behavioral data associated with three tasks commonly used to assay these phenomena: Food consumption, Pavlovian conditioning, and visual discrimination. Interactions of the basal ganglia and amygdala with sensory and orbitofrontal cortices enable the model to replicate the complex pattern of spared and impaired behavioral and emotional capacities seen following lesions of the amygdala and orbitofrontal cortex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The giant cholinergic interneurons of the striatum are tonically active neurons (TANs) that respond with characteristic pauses to novel events and to appetitive and aversive conditioned stimuli. Fluctuations in acetylcholine release by TANs modulate performance- and learning-related dynamics in the striatum. Whereas tonic activity emerges from intrinsic properties of these neurons, glutamatergic inputs from thalamic centromedian-parafascicular nuclei, and dopaminergic inputs from midbrain, are required for the generation of pause responses. No prior computational models encompass both intrinsic and synaptically-gated dynamics. We present a mathematical model that robustly accounts for behavior-related electrophysiological properties of TANs in terms of their intrinsic physiological properties and known afferents. In the model, balanced intrinsic hyperpolarizing and depolarizing currents engender tonic firing, and glutamatergic inputs from thalamus (and cortex) both directly excite and indirectly inhibit TANs. If the latter inhibition, presumably mediated by GABAergic interneurons, exceeds a threshold, its effect is amplified by a KIR current to generate a prolonged pause. In the model, the intrinsic mechanisms and external inputs are both modulated by learning-dependent dopamine (DA) signals and our simulations revealed that many learning-dependent behaviors of TANs are explicable without recourse to learning-dependent changes in synapses onto TANs. The "teaching signal" that modulates reinforcement learning at cortico-striatal synapses may be a sequence composed of an adaptively scaled DA burst, a brief ACh burst, and a scaled ACh pause. Such an interpretation is consistent with recent data on cholinergic control of LTD of cortical synapses onto striatal spiny projection neurons.