2 resultados para Signed likelihood ratio test
em Boston University Digital Common
Resumo:
The Transmission Control Protocol (TCP) has been the protocol of choice for many Internet applications requiring reliable connections. The design of TCP has been challenged by the extension of connections over wireless links. We ask a fundamental question: What is the basic predictive power of TCP of network state, including wireless error conditions? The goal is to improve or readily exploit this predictive power to enable TCP (or variants) to perform well in generalized network settings. To that end, we use Maximum Likelihood Ratio tests to evaluate TCP as a detector/estimator. We quantify how well network state can be estimated, given network response such as distributions of packet delays or TCP throughput that are conditioned on the type of packet loss. Using our model-based approach and extensive simulations, we demonstrate that congestion-induced losses and losses due to wireless transmission errors produce sufficiently different statistics upon which an efficient detector can be built; distributions of network loads can provide effective means for estimating packet loss type; and packet delay is a better signal of network state than short-term throughput. We demonstrate how estimation accuracy is influenced by different proportions of congestion versus wireless losses and penalties on incorrect estimation.
Resumo:
(This Technical Report revises TR-BUCS-2003-011) The Transmission Control Protocol (TCP) has been the protocol of choice for many Internet applications requiring reliable connections. The design of TCP has been challenged by the extension of connections over wireless links. In this paper, we investigate a Bayesian approach to infer at the source host the reason of a packet loss, whether congestion or wireless transmission error. Our approach is "mostly" end-to-end since it requires only one long-term average quantity (namely, long-term average packet loss probability over the wireless segment) that may be best obtained with help from the network (e.g. wireless access agent).Specifically, we use Maximum Likelihood Ratio tests to evaluate TCP as a classifier of the type of packet loss. We study the effectiveness of short-term classification of packet errors (congestion vs. wireless), given stationary prior error probabilities and distributions of packet delays conditioned on the type of packet loss (measured over a larger time scale). Using our Bayesian-based approach and extensive simulations, we demonstrate that congestion-induced losses and losses due to wireless transmission errors produce sufficiently different statistics upon which an efficient online error classifier can be built. We introduce a simple queueing model to underline the conditional delay distributions arising from different kinds of packet losses over a heterogeneous wired/wireless path. We show how Hidden Markov Models (HMMs) can be used by a TCP connection to infer efficiently conditional delay distributions. We demonstrate how estimation accuracy is influenced by different proportions of congestion versus wireless losses and penalties on incorrect classification.