7 resultados para Sharp
em Boston University Digital Common
Resumo:
In this paper, we expose an unorthodox adversarial attack that exploits the transients of a system's adaptive behavior, as opposed to its limited steady-state capacity. We show that a well orchestrated attack could introduce significant inefficiencies that could potentially deprive a network element from much of its capacity, or significantly reduce its service quality, while evading detection by consuming an unsuspicious, small fraction of that element's hijacked capacity. This type of attack stands in sharp contrast to traditional brute-force, sustained high-rate DoS attacks, as well as recently proposed attacks that exploit specific protocol settings such as TCP timeouts. We exemplify what we term as Reduction of Quality (RoQ) attacks by exposing the vulnerabilities of common adaptation mechanisms. We develop control-theoretic models and associated metrics to quantify these vulnerabilities. We present numerical and simulation results, which we validate with observations from real Internet experiments. Our findings motivate the need for the development of adaptation mechanisms that are resilient to these new forms of attacks.
Resumo:
We leverage the buffering capabilities of end-systems to achieve scalable, asynchronous delivery of streams in a peer-to-peer environment. Unlike existing cache-and-relay schemes, we propose a distributed prefetching protocol where peers prefetch and store portions of the streaming media ahead of their playout time, thus not only turning themselves to possible sources for other peers but their prefetched data can allow them to overcome the departure of their source-peer. This stands in sharp contrast to existing cache-and-relay schemes where the departure of the source-peer forces its peer children to go the original server, thus disrupting their service and increasing server and network load. Through mathematical analysis and simulations, we show the effectiveness of maintaining such asynchronous multicasts from several source-peers to other children peers, and the efficacy of prefetching in the face of peer departures. We confirm the scalability of our dPAM protocol as it is shown to significantly reduce server load.
Resumo:
Recent research have exposed new breeds of attacks that are capable of denying service or inflicting significant damage to TCP flows, without sustaining the attack traffic. Such attacks are often referred to as "low-rate" attacks and they stand in sharp contrast against traditional Denial of Service (DoS) attacks that can completely shut off TCP flows by flooding an Internet link. In this paper, we study the impact of these new breeds of attacks and the extent to which defense mechanisms are capable of mitigating the attack's impact. Through adopting a simple discrete-time model with a single TCP flow and a nonoblivious adversary, we were able to expose new variants of these low-rate attacks that could potentially have high attack potency per attack burst. Our analysis is focused towards worst-case scenarios, thus our results should be regarded as upper bounds on the impact of low-rate attacks rather than a real assessment under a specific attack scenario.
Resumo:
This article presents a new neural pattern recognition architecture on multichannel data representation. The architecture emploies generalized ART modules as building blocks to construct a supervised learning system generating recognition codes on channels dynamically selected in context using serial and parallel match trackings led by inter-ART vigilance signals.
Resumo:
A new neural network architecture for spatial patttern recognition using multi-scale pyramida1 coding is here described. The network has an ARTMAP structure with a new class of ART-module, called Hybrid ART-module, as its front-end processor. Hybrid ART-module, which has processing modules corresponding to each scale channel of multi-scale pyramid, employs channels of finer scales only if it is necesssary to discriminate a pattern from others. This process is effected by serial match tracking. Also the parallel match tracking is used to select the spatial location having most salient feature and limit its attention to that part.
Resumo:
This article compares the performance of Fuzzy ARTMAP with that of Learned Vector Quantization and Back Propagation on a handwritten character recognition task. Training with Fuzzy ARTMAP to a fixed criterion used many fewer epochs. Voting with Fuzzy ARTMAP yielded the highest recognition rates.
Resumo:
A neural network model of 3-D visual perception and figure-ground separation by visual cortex is introduced. The theory provides a unified explanation of how a 2-D image may generate a 3-D percept; how figures pop-out from cluttered backgrounds; how spatially sparse disparity cues can generate continuous surface representations at different perceived depths; how representations of occluded regions can be completed and recognized without usually being seen; how occluded regions can sometimes be seen during percepts of transparency; how high spatial frequency parts of an image may appear closer than low spatial frequency parts; how sharp targets are detected better against a figure and blurred targets are detector better against a background; how low spatial frequency parts of an image may be fused while high spatial frequency parts are rivalrous; how sparse blue cones can generate vivid blue surface percepts; how 3-D neon color spreading, visual phantoms, and tissue contrast percepts are generated; how conjunctions of color-and-depth may rapidly pop-out during visual search. These explanations arise derived from an ecological analysis of how monocularly viewed parts of an image inherit the appropriate depth from contiguous binocularly viewed parts, as during DaVinci stereopsis. The model predicts the functional role and ordering of multiple interactions within and between the two parvocellular processing streams that join LGN to prestriate area V4. Interactions from cells representing larger scales and disparities to cells representing smaller scales and disparities are of particular importance.