9 resultados para Shared Lives

em Boston University Digital Common


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of the project is to research the shape and influence of religion and spirituality in the lives of U.S. adolescents; to identify effective practices in the religious, moral, and social formation of the lives of youth; to describe the extent to which youth participate in and benefit from the programs and opportunities that religious communities are offering to their youth; and to foster an informed national discussion about the influence of religion in youth's lives, in order to encourage sustained reflection about and rethinking of our cultural and institutional practices with regard to youth and religion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

http://www.archive.org/details/martyrsofgolbant00brewiala

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The proliferation of inexpensive workstations and networks has prompted several researchers to use such distributed systems for parallel computing. Attempts have been made to offer a shared-memory programming model on such distributed memory computers. Most systems provide a shared-memory that is coherent in that all processes that use it agree on the order of all memory events. This dissertation explores the possibility of a significant improvement in the performance of some applications when they use non-coherent memory. First, a new formal model to describe existing non-coherent memories is developed. I use this model to prove that certain problems can be solved using asynchronous iterative algorithms on shared-memory in which the coherence constraints are substantially relaxed. In the course of the development of the model I discovered a new type of non-coherent behavior called Local Consistency. Second, a programming model, Mermera, is proposed. It provides programmers with a choice of hierarchically related non-coherent behaviors along with one coherent behavior. Thus, one can trade-off the ease of programming with coherent memory for improved performance with non-coherent memory. As an example, I present a program to solve a linear system of equations using an asynchronous iterative algorithm. This program uses all the behaviors offered by Mermera. Third, I describe the implementation of Mermera on a BBN Butterfly TC2000 and on a network of workstations. The performance of a version of the equation solving program that uses all the behaviors of Mermera is compared with that of a version that uses coherent behavior only. For a system of 1000 equations the former exhibits at least a 5-fold improvement in convergence time over the latter. The version using coherent behavior only does not benefit from employing more than one workstation to solve the problem while the program using non-coherent behavior continues to achieve improved performance as the number of workstations is increased from 1 to 6. This measurement corroborates our belief that non-coherent shared memory can be a performance boon for some applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coherent shared memory is a convenient, but inefficient, method of inter-process communication for parallel programs. By contrast, message passing can be less convenient, but more efficient. To get the benefits of both models, several non-coherent memory behaviors have recently been proposed in the literature. We present an implementation of Mermera, a shared memory system that supports both coherent and non-coherent behaviors in a manner that enables programmers to mix multiple behaviors in the same program[HS93]. A programmer can debug a Mermera program using coherent memory, and then improve its performance by selectively reducing the level of coherence in the parts that are critical to performance. Mermera permits a trade-off of coherence for performance. We analyze this trade-off through measurements of our implementation, and by an example that illustrates the style of programming needed to exploit non-coherence. We find that, even on a small network of workstations, the performance advantage of non-coherence is compelling. Raw non-coherent memory operations perform 20-40~times better than non-coherent memory operations. An example application program is shown to run 5-11~times faster when permitted to exploit non-coherence. We conclude by commenting on our use of the Isis Toolkit of multicast protocols in implementing Mermera.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Programmers of parallel processes that communicate through shared globally distributed data structures (DDS) face a difficult choice. Either they must explicitly program DDS management, by partitioning or replicating it over multiple distributed memory modules, or be content with a high latency coherent (sequentially consistent) memory abstraction that hides the DDS' distribution. We present Mermera, a new formalism and system that enable a smooth spectrum of noncoherent shared memory behaviors to coexist between the above two extremes. Our approach allows us to define known noncoherent memories in a new simple way, to identify new memory behaviors, and to characterize generic mixed-behavior computations. The latter are useful for programming using multiple behaviors that complement each others' advantages. On the practical side, we show that the large class of programs that use asynchronous iterative methods (AIM) can run correctly on slow memory, one of the weakest, and hence most efficient and fault-tolerant, noncoherence conditions. An example AIM program to solve linear equations, is developed to illustrate: (1) the need for concurrently mixing memory behaviors, and, (2) the performance gains attainable via noncoherence. Other program classes tolerate weak memory consistency by synchronizing in such a way as to yield executions indistinguishable from coherent ones. AIM computations on noncoherent memory yield noncoherent, yet correct, computations. We report performance data that exemplifies the potential benefits of noncoherence, in terms of raw memory performance, as well as application speed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ERRATA: We present corrections to Fact 3 and (as a consequence) to Lemma 1 of BUCS Technical Report BUCS-TR-2000-013 (also published in IEEE INCP'2000)[1]. These corrections result in slight changes to the formulae used for the identifications of shared losses, which we quantify.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose Trade & Cap (T&C), an economics-inspired mechanism that incentivizes users to voluntarily coordinate their consumption of the bandwidth of a shared resource (e.g., a DSLAM link) so as to converge on what they perceive to be an equitable allocation, while ensuring efficient resource utilization. Under T&C, rather than acting as an arbiter, an Internet Service Provider (ISP) acts as an enforcer of what the community of rational users sharing the resource decides is a fair allocation of that resource. Our T&C mechanism proceeds in two phases. In the first, software agents acting on behalf of users engage in a strategic trading game in which each user agent selfishly chooses bandwidth slots to reserve in support of primary, interactive network usage activities. In the second phase, each user is allowed to acquire additional bandwidth slots in support of presumed open-ended need for fluid bandwidth, catering to secondary applications. The acquisition of this fluid bandwidth is subject to the remaining "buying power" of each user and by prevalent "market prices" – both of which are determined by the results of the trading phase and a desirable aggregate cap on link utilization. We present analytical results that establish the underpinnings of our T&C mechanism, including game-theoretic results pertaining to the trading phase, and pricing of fluid bandwidth allocation pertaining to the capping phase. Using real network traces, we present extensive experimental results that demonstrate the benefits of our scheme, which we also show to be practical by highlighting the salient features of an efficient implementation architecture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Current Internet transport protocols make end-to-end measurements and maintain per-connection state to regulate the use of shared network resources. When two or more such connections share a common endpoint, there is an opportunity to correlate the end-to-end measurements made by these protocols to better diagnose and control the use of shared resources. We develop packet probing techniques to determine whether a pair of connections experience shared congestion. Correct, efficient diagnoses could enable new techniques for aggregate congestion control, QoS admission control, connection scheduling and mirror site selection. Our extensive simulation results demonstrate that the conditional (Bayesian) probing approach we employ provides superior accuracy, converges faster, and tolerates a wider range of network conditions than recently proposed memoryless (Markovian) probing approaches for addressing this opportunity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper focuses on an efficient user-level method for the deployment of application-specific extensions, using commodity operating systems and hardware. A sandboxing technique is described that supports multiple extensions within a shared virtual address space. Applications can register sandboxed code with the system, so that it may be executed in the context of any process. Such code may be used to implement generic routines and handlers for a class of applications, or system service extensions that complement the functionality of the core kernel. Using our approach, application-specific extensions can be written like conventional user-level code, utilizing libraries and system calls, with the advantage that they may be executed without the traditional costs of scheduling and context-switching between process-level protection domains. No special hardware support such as segmentation or tagged translation look-aside buffers (TLBs) is required. Instead, our ``user-level sandboxing'' mechanism requires only paged-based virtual memory support, given that sandboxed extensions are either written by a trusted source or are guaranteed to be memory-safe (e.g., using type-safe languages). Using a fast method of upcalls, we show how our mechanism provides significant performance improvements over traditional methods of invoking user-level services. As an application of our approach, we have implemented a user-level network subsystem that avoids data copying via the kernel and, in many cases, yields far greater network throughput than kernel-level approaches.