2 resultados para Set planning groups

em Boston University Digital Common


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we discuss a new type of query in Spatial Databases, called Trip Planning Query (TPQ). Given a set of points P in space, where each point belongs to a category, and given two points s and e, TPQ asks for the best trip that starts at s, passes through exactly one point from each category, and ends at e. An example of a TPQ is when a user wants to visit a set of different places and at the same time minimize the total travelling cost, e.g. what is the shortest travelling plan for me to visit an automobile shop, a CVS pharmacy outlet, and a Best Buy shop along my trip from A to B? The trip planning query is an extension of the well-known TSP problem and therefore is NP-hard. The difficulty of this query lies in the existence of multiple choices for each category. In this paper, we first study fast approximation algorithms for the trip planning query in a metric space, assuming that the data set fits in main memory, and give the theory analysis of their approximation bounds. Then, the trip planning query is examined for data sets that do not fit in main memory and must be stored on disk. For the disk-resident data, we consider two cases. In one case, we assume that the points are located in Euclidean space and indexed with an Rtree. In the other case, we consider the problem of points that lie on the edges of a spatial network (e.g. road network) and the distance between two points is defined using the shortest distance over the network. Finally, we give an experimental evaluation of the proposed algorithms using synthetic data sets generated on real road networks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although cooperation generally increases the amount of resources available to a community of nodes, thus improving individual and collective performance, it also allows for the appearance of potential mistreatment problems through the exposition of one node’s resources to others. We study such concerns by considering a group of independent, rational, self-aware nodes that cooperate using on-line caching algorithms, where the exposed resource is the storage of each node. Motivated by content networking applications – including web caching, CDNs, and P2P – this paper extends our previous work on the off-line version of the problem, which was limited to object replication and was conducted under a game-theoretic framework. We identify and investigate two causes of mistreatment: (1) cache state interactions (due to the cooperative servicing of requests) and (2) the adoption of a common scheme for cache replacement/redirection/admission policies. Using analytic models, numerical solutions of these models, as well as simulation experiments, we show that online cooperation schemes using caching are fairly robust to mistreatment caused by state interactions. When this becomes possible, the interaction through the exchange of miss-streams has to be very intense, making it feasible for the mistreated nodes to detect and react to the exploitation. This robustness ceases to exist when nodes fetch and store objects in response to remote requests, i.e., when they operate as Level-2 caches (or proxies) for other nodes. Regarding mistreatment due to a common scheme, we show that this can easily take place when the “outlier” characteristics of some of the nodes get overlooked. This finding underscores the importance of allowing cooperative caching nodes the flexibility of choosing from a diverse set of schemes to fit the peculiarities of individual nodes. To that end, we outline an emulation-based framework for the development of mistreatment-resilient distributed selfish caching schemes.