13 resultados para Serial number

em Boston University Digital Common


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Single nucleotide polymorphisms (SNPs) have been used extensively in genetics and epidemiology studies. Traditionally, SNPs that did not pass the Hardy-Weinberg equilibrium (HWE) test were excluded from these analyses. Many investigators have addressed possible causes for departure from HWE, including genotyping errors, population admixture and segmental duplication. Recent large-scale surveys have revealed abundant structural variations in the human genome, including copy number variations (CNVs). This suggests that a significant number of SNPs must be within these regions, which may cause deviation from HWE. Results We performed a Bayesian analysis on the potential effect of copy number variation, segmental duplication and genotyping errors on the behavior of SNPs. Our results suggest that copy number variation is a major factor of HWE violation for SNPs with a small minor allele frequency, when the sample size is large and the genotyping error rate is 0~1%. Conclusions Our study provides the posterior probability that a SNP falls in a CNV or a segmental duplication, given the observed allele frequency of the SNP, sample size and the significance level of HWE testing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the power of genetic algorithms at solving the MAX-CLIQUE problem. We measure the performance of a standard genetic algorithm on an elementary set of problem instances consisting of embedded cliques in random graphs. We indicate the need for improvement, and introduce a new genetic algorithm, the multi-phase annealed GA, which exhibits superior performance on the same problem set. As we scale up the problem size and test on \hard" benchmark instances, we notice a degraded performance in the algorithm caused by premature convergence to local minima. To alleviate this problem, a sequence of modi cations are implemented ranging from changes in input representation to systematic local search. The most recent version, called union GA, incorporates the features of union cross-over, greedy replacement, and diversity enhancement. It shows a marked speed-up in the number of iterations required to find a given solution, as well as some improvement in the clique size found. We discuss issues related to the SIMD implementation of the genetic algorithms on a Thinking Machines CM-5, which was necessitated by the intrinsically high time complexity (O(n3)) of the serial algorithm for computing one iteration. Our preliminary conclusions are: (1) a genetic algorithm needs to be heavily customized to work "well" for the clique problem; (2) a GA is computationally very expensive, and its use is only recommended if it is known to find larger cliques than other algorithms; (3) although our customization e ort is bringing forth continued improvements, there is no clear evidence, at this time, that a GA will have better success in circumventing local minima.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a multi-object multi-camera framework for tracking large numbers of tightly-spaced objects that rapidly move in three dimensions. We formulate the problem of finding correspondences across multiple views as a multidimensional assignment problem and use a greedy randomized adaptive search procedure to solve this NP-hard problem efficiently. To account for occlusions, we relax the one-to-one constraint that one measurement corresponds to one object and iteratively solve the relaxed assignment problem. After correspondences are established, object trajectories are estimated by stereoscopic reconstruction using an epipolar-neighborhood search. We embedded our method into a tracker-to-tracker multi-view fusion system that not only obtains the three-dimensional trajectories of closely-moving objects but also accurately settles track uncertainties that could not be resolved from single views due to occlusion. We conducted experiments to validate our greedy assignment procedure and our technique to recover from occlusions. We successfully track hundreds of flying bats and provide an analysis of their group behavior based on 150 reconstructed 3D trajectories.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A growing wave of behavioral studies, using a wide variety of paradigms that were introduced or greatly refined in recent years, has generated a new wealth of parametric observations about serial order behavior. What was a mere trickle of neurophysiological studies has grown to a more steady stream of probes of neural sites and mechanisms underlying sequential behavior. Moreover, simulation models of serial behavior generation have begun to open a channel to link cellular dynamics with cognitive and behavioral dynamics. Here we summarize the major results from prominent sequence learning and performance tasks, namely immediate serial recall, typing, 2XN, discrete sequence production, and serial reaction time. These populate a continuum from higher to lower degrees of internal control of sequential organization. The main movement classes covered are speech and keypressing, both involving small amplitude movements that are very amenable to parametric study. A brief synopsis of classes of serial order models, vis-à-vis the detailing of major effects found in the behavioral data, leads to a focus on competitive queuing (CQ) models. Recently, the many behavioral predictive successes of CQ models have been joined by successful prediction of distinctively patterend electrophysiological recordings in prefrontal cortex, wherein parallel activation dynamics of multiple neural ensembles strikingly matches the parallel dynamics predicted by CQ theory. An extended CQ simulation model-the N-STREAMS neural network model-is then examined to highlight issues in ongoing attemptes to accomodate a broader range of behavioral and neurophysiological data within a CQ-consistent theory. Important contemporary issues such as the nature of working memory representations for sequential behavior, and the development and role of chunks in hierarchial control are prominent throughout.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we introduce the Generalized Equality Classifier (GEC) for use as an unsupervised clustering algorithm in categorizing analog data. GEC is based on a formal definition of inexact equality originally developed for voting in fault tolerant software applications. GEC is defined using a metric space framework. The only parameter in GEC is a scalar threshold which defines the approximate equality of two patterns. Here, we compare the characteristics of GEC to the ART2-A algorithm (Carpenter, Grossberg, and Rosen, 1991). In particular, we show that GEC with the Hamming distance performs the same optimization as ART2. Moreover, GEC has lower computational requirements than AR12 on serial machines.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article presents a new neural pattern recognition architecture on multichannel data representation. The architecture emploies generalized ART modules as building blocks to construct a supervised learning system generating recognition codes on channels dynamically selected in context using serial and parallel match trackings led by inter-ART vigilance signals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The What-and-Where filter forms part of a neural network architecture for spatial mapping, object recognition, and image understanding. The Where fllter responds to an image figure that has been separated from its background. It generates a spatial map whose cell activations simultaneously represent the position, orientation, ancl size of all tbe figures in a scene (where they are). This spatial map may he used to direct spatially localized attention to these image features. A multiscale array of oriented detectors, followed by competitve and interpolative interactions between position, orientation, and size scales, is used to define the Where filter. This analysis discloses several issues that need to be dealt with by a spatial mapping system that is based upon oriented filters, such as the role of cliff filters with and without normalization, the double peak problem of maximum orientation across size scale, and the different self-similar interpolation properties across orientation than across size scale. Several computationally efficient Where filters are proposed. The Where filter rnay be used for parallel transformation of multiple image figures into invariant representations that are insensitive to the figures' original position, orientation, and size. These invariant figural representations form part of a system devoted to attentive object learning and recognition (what it is). Unlike some alternative models where serial search for a target occurs, a What and Where representation can he used to rapidly search in parallel for a desired target in a scene. Such a representation can also be used to learn multidimensional representations of objects and their spatial relationships for purposes of image understanding. The What-and-Where filter is inspired by neurobiological data showing that a Where processing stream in the cerebral cortex is used for attentive spatial localization and orientation, whereas a What processing stream is used for attentive object learning and recognition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new neural network architecture for spatial patttern recognition using multi-scale pyramida1 coding is here described. The network has an ARTMAP structure with a new class of ART-module, called Hybrid ART-module, as its front-end processor. Hybrid ART-module, which has processing modules corresponding to each scale channel of multi-scale pyramid, employs channels of finer scales only if it is necesssary to discriminate a pattern from others. This process is effected by serial match tracking. Also the parallel match tracking is used to select the spatial location having most salient feature and limit its attention to that part.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The concepts of declarative memory and procedural memory have been used to distinguish two basic types of learning. A neural network model suggests how such memory processes work together as recognition learning, reinforcement learning, and sensory-motor learning take place during adaptive behaviors. To coordinate these processes, the hippocampal formation and cerebellum each contain circuits that learn to adaptively time their outputs. Within the model, hippocampal timing helps to maintain attention on motivationally salient goal objects during variable task-related delays, and cerebellar timing controls the release of conditioned responses. This property is part of the model's description of how cognitive-emotional interactions focus attention on motivationally valued cues, and how this process breaks down due to hippocampal ablation. The model suggests that the hippocampal mechanisms that help to rapidly draw attention to salient cues could prematurely release motor commands were not the release of these commands adaptively timed by the cerebellum. The model hippocampal system modulates cortical recognition learning without actually encoding the representational information that the cortex encodes. These properties avoid the difficulties faced by several models that propose a direct hippocampal role in recognition learning. Learning within the model hippocampal system controls adaptive timing and spatial orientation. Model properties hereby clarify how hippocampal ablations cause amnesic symptoms and difficulties with tasks which combine task delays, novelty detection, and attention towards goal objects amid distractions. When these model recognition, reinforcement, sensory-motor, and timing processes work together, they suggest how the brain can accomplish conditioning of multiple sensory events to delayed rewards, as during serial compound conditioning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

How do the layered circuits of prefrontal and motor cortex carry out working memory storage, sequence learning, and voluntary sequential item selection and performance? A neural model called LIST PARSE is presented to explain and quantitatively simulate cognitive data about both immediate serial recall and free recall, including bowing of the serial position performance curves, error-type distributions, temporal limitations upon recall, and list length effects. The model also qualitatively explains cognitive effects related to attentional modulation, temporal grouping, variable presentation rates, phonemic similarity, presentation of non-words, word frequency/item familiarity and list strength, distracters and modality effects. In addition, the model quantitatively simulates neurophysiological data from the macaque prefrontal cortex obtained during sequential sensory-motor imitation and planned performance. The article further develops a theory concerning how the cerebral cortex works by showing how variations of the laminar circuits that have previously clarified how the visual cortex sees can also support cognitive processing of sequentially organized behaviors.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article describes two neural network modules that form part of an emerging theory of how adaptive control of goal-directed sensory-motor skills is achieved by humans and other animals. The Vector-Integration-To-Endpoint (VITE) model suggests how synchronous multi-joint trajectories are generated and performed at variable speeds. The Factorization-of-LEngth-and-TEnsion (FLETE) model suggests how outflow movement commands from a VITE model may be performed at variable force levels without a loss of positional accuracy. The invariance of positional control under speed and force rescaling sheds new light upon a familiar strategy of motor skill development: Skill learning begins with performance at low speed and low limb compliance and proceeds to higher speeds and compliances. The VITE model helps to explain many neural and behavioral data about trajectory formation, including data about neural coding within the posterior parietal cortex, motor cortex, and globus pallidus, and behavioral properties such as Woodworth's Law, Fitts Law, peak acceleration as a function of movement amplitude and duration, isotonic arm movement properties before and after arm-deafferentation, central error correction properties of isometric contractions, motor priming without overt action, velocity amplification during target switching, velocity profile invariance across different movement distances, changes in velocity profile asymmetry across different movement durations, staggered onset times for controlling linear trajectories with synchronous offset times, changes in the ratio of maximum to average velocity during discrete versus serial movements, and shared properties of arm and speech articulator movements. The FLETE model provides new insights into how spina-muscular circuits process variable forces without a loss of positional control. These results explicate the size principle of motor neuron recruitment, descending co-contractive compliance signals, Renshaw cells, Ia interneurons, fast automatic reactive control by ascending feedback from muscle spindles, slow adaptive predictive control via cerebellar learning using muscle spindle error signals to train adaptive movement gains, fractured somatotopy in the opponent organization of cerebellar learning, adaptive compensation for variable moment-arms, and force feedback from Golgi tendon organs. More generally, the models provide a computational rationale for the use of nonspecific control signals in volitional control, or "acts of will", and of efference copies and opponent processing in both reactive and adaptive motor control tasks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the design of a self~organizing, hierarchical neural network model of unsupervised serial learning. The model learns to recognize, store, and recall sequences of unitized patterns, using either short-term memory (STM) or both STM and long-term memory (LTM) mechanisms. Timing information is learned and recall {both from STM and from LTM) is performed with a learned rhythmical structure. The network, bearing similarities with ART (Carpenter & Grossberg 1987a), learns to map temporal sequences to unitized patterns, which makes it suitable for hierarchical operation. It is therefore capable of self-organizing codes for sequences of sequences. The capacity is only limited by the number of nodes provided. Selected simulation results are reported to illustrate system properties.