8 resultados para Sequences (Liturgy)
em Boston University Digital Common
Resumo:
Scene flow methods estimate the three-dimensional motion field for points in the world, using multi-camera video data. Such methods combine multi-view reconstruction with motion estimation approaches. This paper describes an alternative formulation for dense scene flow estimation that provides convincing results using only two cameras by fusing stereo and optical flow estimation into a single coherent framework. To handle the aperture problems inherent in the estimation task, a multi-scale method along with a novel adaptive smoothing technique is used to gain a regularized solution. This combined approach both preserves discontinuities and prevents over-regularization-two problems commonly associated with basic multi-scale approaches. Internally, the framework generates probability distributions for optical flow and disparity. Taking into account the uncertainty in the intermediate stages allows for more reliable estimation of the 3D scene flow than standard stereo and optical flow methods allow. Experiments with synthetic and real test data demonstrate the effectiveness of the approach.
Resumo:
In gesture and sign language video sequences, hand motion tends to be rapid, and hands frequently appear in front of each other or in front of the face. Thus, hand location is often ambiguous, and naive color-based hand tracking is insufficient. To improve tracking accuracy, some methods employ a prediction-update framework, but such methods require careful initialization of model parameters, and tend to drift and lose track in extended sequences. In this paper, a temporal filtering framework for hand tracking is proposed that can initialize and reset itself without human intervention. In each frame, simple features like color and motion residue are exploited to identify multiple candidate hand locations. The temporal filter then uses the Viterbi algorithm to select among the candidates from frame to frame. The resulting tracking system can automatically identify video trajectories of unambiguous hand motion, and detect frames where tracking becomes ambiguous because of occlusions or overlaps. Experiments on video sequences of several hundred frames in duration demonstrate the system's ability to track hands robustly, to detect and handle tracking ambiguities, and to extract the trajectories of unambiguous hand motion.
Resumo:
Scene flow methods estimate the three-dimensional motion field for points in the world, using multi-camera video data. Such methods combine multi-view reconstruction with motion estimation. This paper describes an alternative formulation for dense scene flow estimation that provides reliable results using only two cameras by fusing stereo and optical flow estimation into a single coherent framework. Internally, the proposed algorithm generates probability distributions for optical flow and disparity. Taking into account the uncertainty in the intermediate stages allows for more reliable estimation of the 3D scene flow than previous methods allow. To handle the aperture problems inherent in the estimation of optical flow and disparity, a multi-scale method along with a novel region-based technique is used within a regularized solution. This combined approach both preserves discontinuities and prevents over-regularization – two problems commonly associated with the basic multi-scale approaches. Experiments with synthetic and real test data demonstrate the strength of the proposed approach.
Resumo:
The problem of discovering frequent arrangements of regions of high occurrence of one or more items of a given alphabet in a sequence is studied, and two efficient approaches are proposed to solve it. The first approach is entropy-based and uses an existing recursive segmentation technique to split the input sequence into a set of homogeneous segments. The key idea of the second approach is to use a set of sliding windows over the sequence. Each sliding window keeps a set of statistics of a sequence segment that mainly includes the number of occurrences of each item in that segment. Combining these statistics efficiently yields the complete set of regions of high occurrence of the items of the given alphabet. After identifying these regions, the sequence is converted to a sequence of labeled intervals (each one corresponding to a region). An efficient algorithm for mining frequent arrangements of temporal intervals on a single sequence is applied on the converted sequence to discover frequently occurring arrangements of these regions. The proposed algorithms are tested on various DNA sequences producing results with significant biological meaning.
Resumo:
A growing wave of behavioral studies, using a wide variety of paradigms that were introduced or greatly refined in recent years, has generated a new wealth of parametric observations about serial order behavior. What was a mere trickle of neurophysiological studies has grown to a more steady stream of probes of neural sites and mechanisms underlying sequential behavior. Moreover, simulation models of serial behavior generation have begun to open a channel to link cellular dynamics with cognitive and behavioral dynamics. Here we summarize the major results from prominent sequence learning and performance tasks, namely immediate serial recall, typing, 2XN, discrete sequence production, and serial reaction time. These populate a continuum from higher to lower degrees of internal control of sequential organization. The main movement classes covered are speech and keypressing, both involving small amplitude movements that are very amenable to parametric study. A brief synopsis of classes of serial order models, vis-à-vis the detailing of major effects found in the behavioral data, leads to a focus on competitive queuing (CQ) models. Recently, the many behavioral predictive successes of CQ models have been joined by successful prediction of distinctively patterend electrophysiological recordings in prefrontal cortex, wherein parallel activation dynamics of multiple neural ensembles strikingly matches the parallel dynamics predicted by CQ theory. An extended CQ simulation model-the N-STREAMS neural network model-is then examined to highlight issues in ongoing attemptes to accomodate a broader range of behavioral and neurophysiological data within a CQ-consistent theory. Important contemporary issues such as the nature of working memory representations for sequential behavior, and the development and role of chunks in hierarchial control are prominent throughout.
Resumo:
A model which extends the adaptive resonance theory model to sequential memory is presented. This new model learns sequences of events and recalls a sequence when presented with parts of the sequence. A sequence can have repeated events and different sequences can share events. The ART model is modified by creating interconnected sublayers within ART's F2 layer. Nodes within F2 learn temporal patterns by forming recency gradients within LTM. Versions of the ART model like ART I, ART 2, and fuzzy ART can be used.
Resumo:
A working memory model is described that is capable of storing and recalling arbitrary temporal sequences of events, including repeated items. These memories encode the invariant temporal order of sequential events that may be presented at widely differing speeds, durations, and interstimulus intervals. This temporal order code is designed to enable all possible groupings of sequential events to be stably learned and remembered in real time, even as new events perturb the system.
Resumo:
Neural network models of working memory, called Sustained Temporal Order REcurrent (STORE) models, are described. They encode the invariant temporal order of sequential events in short term memory (STM) in a way that mimics cognitive data about working memory, including primacy, recency, and bowed order and error gradients. As new items are presented, the pattern of previously stored items is invariant in the sense that, relative activations remain constant through time. This invariant temporal order code enables all possible groupings of sequential events to be stably learned and remembered in real time, even as new events perturb the system. Such a competence is needed to design self-organizing temporal recognition and planning systems in which any subsequence of events may need to be categorized in order to to control and predict future behavior or external events. STORE models show how arbitrary event sequences may be invariantly stored, including repeated events. A preprocessor interacts with the working memory to represent event repeats in spatially separate locations. It is shown why at least two processing levels are needed to invariantly store events presented with variable durations and interstimulus intervals. It is also shown how network parameters control the type and shape of primacy, recency, or bowed temporal order gradients that will be stored.