3 resultados para Segments of signs
em Boston University Digital Common
Resumo:
We introduce a method for recovering the spatial and temporal alignment between two or more views of objects moving over a ground plane. Existing approaches either assume that the streams are globally synchronized, so that only solving the spatial alignment is needed, or that the temporal misalignment is small enough so that exhaustive search can be performed. In contrast, our approach can recover both the spatial and temporal alignment. We compute for each trajectory a number of interesting segments, and we use their description to form putative matches between trajectories. Each pair of corresponding interesting segments induces a temporal alignment, and defines an interval of common support across two views of an object that is used to recover the spatial alignment. Interesting segments and their descriptors are defined using algebraic projective invariants measured along the trajectories. Similarity between interesting segments is computed taking into account the statistics of such invariants. Candidate alignment parameters are verified checking the consistency, in terms of the symmetric transfer error, of all the putative pairs of corresponding interesting segments. Experiments are conducted with two different sets of data, one with two views of an outdoor scene featuring moving people and cars, and one with four views of a laboratory sequence featuring moving radio-controlled cars.
Resumo:
Handshape is a key articulatory parameter in sign language, and thus handshape recognition from signing video is essential for sign recognition and retrieval. Handshape transitions within monomorphemic lexical signs (the largest class of signs in signed languages) are governed by phonological rules. For example, such transitions normally involve either closing or opening of the hand (i.e., to exclusively use either folding or unfolding of the palm and one or more fingers). Furthermore, akin to allophonic variations in spoken languages, both inter- and intra- signer variations in the production of specific handshapes are observed. We propose a Bayesian network formulation to exploit handshape co-occurrence constraints, also utilizing information about allophonic variations to aid in handshape recognition. We propose a fast non-rigid image alignment method to gain improved robustness to handshape appearance variations during computation of observation likelihoods in the Bayesian network. We evaluate our handshape recognition approach on a large dataset of monomorphemic lexical signs. We demonstrate that leveraging linguistic constraints on handshapes results in improved handshape recognition accuracy. As part of the overall project, we are collecting and preparing for dissemination a large corpus (three thousand signs from three native signers) of American Sign Language (ASL) video. The video have been annotated using SignStream® [Neidle et al.] with labels for linguistic information such as glosses, morphological properties and variations, and start/end handshapes associated with each ASL sign.
Resumo:
We introduce a view-point invariant representation of moving object trajectories that can be used in video database applications. It is assumed that trajectories lie on a surface that can be locally approximated with a plane. Raw trajectory data is first locally approximated with a cubic spline via least squares fitting. For each sampled point of the obtained curve, a projective invariant feature is computed using a small number of points in its neighborhood. The resulting sequence of invariant features computed along the entire trajectory forms the view invariant descriptor of the trajectory itself. Time parametrization has been exploited to compute cross ratios without ambiguity due to point ordering. Similarity between descriptors of different trajectories is measured with a distance that takes into account the statistical properties of the cross ratio, and its symmetry with respect to the point at infinity. In experiments, an overall correct classification rate of about 95% has been obtained on a dataset of 58 trajectories of players in soccer video, and an overall correct classification rate of about 80% has been obtained on matching partial segments of trajectories collected from two overlapping views of outdoor scenes with moving people and cars.