13 resultados para Segment

em Boston University Digital Common


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A method is proposed that can generate a ranked list of plausible three-dimensional hand configurations that best match an input image. Hand pose estimation is formulated as an image database indexing problem, where the closest matches for an input hand image are retrieved from a large database of synthetic hand images. In contrast to previous approaches, the system can function in the presence of clutter, thanks to two novel clutter-tolerant indexing methods. First, a computationally efficient approximation of the image-to-model chamfer distance is obtained by embedding binary edge images into a high-dimensional Euclide an space. Second, a general-purpose, probabilistic line matching method identifies those line segment correspondences between model and input images that are the least likely to have occurred by chance. The performance of this clutter-tolerant approach is demonstrated in quantitative experiments with hundreds of real hand images.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The algorithm presented in this paper aims to segment the foreground objects in video (e.g., people) given time-varying, textured backgrounds. Examples of time-varying backgrounds include waves on water, clouds moving, trees waving in the wind, automobile traffic, moving crowds, escalators, etc. We have developed a novel foreground-background segmentation algorithm that explicitly accounts for the non-stationary nature and clutter-like appearance of many dynamic textures. The dynamic texture is modeled by an Autoregressive Moving Average Model (ARMA). A robust Kalman filter algorithm iteratively estimates the intrinsic appearance of the dynamic texture, as well as the regions of the foreground objects. Preliminary experiments with this method have demonstrated promising results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

(This Technical Report revises TR-BUCS-2003-011) The Transmission Control Protocol (TCP) has been the protocol of choice for many Internet applications requiring reliable connections. The design of TCP has been challenged by the extension of connections over wireless links. In this paper, we investigate a Bayesian approach to infer at the source host the reason of a packet loss, whether congestion or wireless transmission error. Our approach is "mostly" end-to-end since it requires only one long-term average quantity (namely, long-term average packet loss probability over the wireless segment) that may be best obtained with help from the network (e.g. wireless access agent).Specifically, we use Maximum Likelihood Ratio tests to evaluate TCP as a classifier of the type of packet loss. We study the effectiveness of short-term classification of packet errors (congestion vs. wireless), given stationary prior error probabilities and distributions of packet delays conditioned on the type of packet loss (measured over a larger time scale). Using our Bayesian-based approach and extensive simulations, we demonstrate that congestion-induced losses and losses due to wireless transmission errors produce sufficiently different statistics upon which an efficient online error classifier can be built. We introduce a simple queueing model to underline the conditional delay distributions arising from different kinds of packet losses over a heterogeneous wired/wireless path. We show how Hidden Markov Models (HMMs) can be used by a TCP connection to infer efficiently conditional delay distributions. We demonstrate how estimation accuracy is influenced by different proportions of congestion versus wireless losses and penalties on incorrect classification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of discovering frequent poly-regions (i.e. regions of high occurrence of a set of items or patterns of a given alphabet) in a sequence is studied, and three efficient approaches are proposed to solve it. The first one is entropy-based and applies a recursive segmentation technique that produces a set of candidate segments which may potentially lead to a poly-region. The key idea of the second approach is the use of a set of sliding windows over the sequence. Each sliding window covers a sequence segment and keeps a set of statistics that mainly include the number of occurrences of each item or pattern in that segment. Combining these statistics efficiently yields the complete set of poly-regions in the given sequence. The third approach applies a technique based on the majority vote, achieving linear running time with a minimal number of false negatives. After identifying the poly-regions, the sequence is converted to a sequence of labeled intervals (each one corresponding to a poly-region). An efficient algorithm for mining frequent arrangements of intervals is applied to the converted sequence to discover frequently occurring arrangements of poly-regions in different parts of DNA, including coding regions. The proposed algorithms are tested on various DNA sequences producing results of significant biological meaning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A combined 2D, 3D approach is presented that allows for robust tracking of moving bodies in a given environment as observed via a single, uncalibrated video camera. Tracking is robust even in the presence of occlusions. Low-level features are often insufficient for detection, segmentation, and tracking of non-rigid moving objects. Therefore, an improved mechanism is proposed that combines low-level (image processing) and mid-level (recursive trajectory estimation) information obtained during the tracking process. The resulting system can segment and maintain the tracking of moving objects before, during, and after occlusion. At each frame, the system also extracts a stabilized coordinate frame of the moving objects. This stabilized frame is used to resize and resample the moving blob so that it can be used as input to motion recognition modules. The approach enables robust tracking without constraining the system to know the shape of the objects being tracked beforehand; although, some assumptions are made about the characteristics of the shape of the objects, and how they evolve with time. Experiments in tracking moving people are described.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A mechanism is proposed that integrates low-level (image processing), mid-level (recursive 3D trajectory estimation), and high-level (action recognition) processes. It is assumed that the system observes multiple moving objects via a single, uncalibrated video camera. A novel extended Kalman filter formulation is used in estimating the relative 3D motion trajectories up to a scale factor. The recursive estimation process provides a prediction and error measure that is exploited in higher-level stages of action recognition. Conversely, higher-level mechanisms provide feedback that allows the system to reliably segment and maintain the tracking of moving objects before, during, and after occlusion. The 3D trajectory, occlusion, and segmentation information are utilized in extracting stabilized views of the moving object. Trajectory-guided recognition (TGR) is proposed as a new and efficient method for adaptive classification of action. The TGR approach is demonstrated using "motion history images" that are then recognized via a mixture of Gaussian classifier. The system was tested in recognizing various dynamic human outdoor activities; e.g., running, walking, roller blading, and cycling. Experiments with synthetic data sets are used to evaluate stability of the trajectory estimator with respect to noise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A combined 2D, 3D approach is presented that allows for robust tracking of moving people and recognition of actions. It is assumed that the system observes multiple moving objects via a single, uncalibrated video camera. Low-level features are often insufficient for detection, segmentation, and tracking of non-rigid moving objects. Therefore, an improved mechanism is proposed that integrates low-level (image processing), mid-level (recursive 3D trajectory estimation), and high-level (action recognition) processes. A novel extended Kalman filter formulation is used in estimating the relative 3D motion trajectories up to a scale factor. The recursive estimation process provides a prediction and error measure that is exploited in higher-level stages of action recognition. Conversely, higher-level mechanisms provide feedback that allows the system to reliably segment and maintain the tracking of moving objects before, during, and after occlusion. The 3D trajectory, occlusion, and segmentation information are utilized in extracting stabilized views of the moving object that are then used as input to action recognition modules. Trajectory-guided recognition (TGR) is proposed as a new and efficient method for adaptive classification of action. The TGR approach is demonstrated using "motion history images" that are then recognized via a mixture-of-Gaussians classifier. The system was tested in recognizing various dynamic human outdoor activities: running, walking, roller blading, and cycling. Experiments with real and synthetic data sets are used to evaluate stability of the trajectory estimator with respect to noise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The problem of discovering frequent arrangements of regions of high occurrence of one or more items of a given alphabet in a sequence is studied, and two efficient approaches are proposed to solve it. The first approach is entropy-based and uses an existing recursive segmentation technique to split the input sequence into a set of homogeneous segments. The key idea of the second approach is to use a set of sliding windows over the sequence. Each sliding window keeps a set of statistics of a sequence segment that mainly includes the number of occurrences of each item in that segment. Combining these statistics efficiently yields the complete set of regions of high occurrence of the items of the given alphabet. After identifying these regions, the sequence is converted to a sequence of labeled intervals (each one corresponding to a region). An efficient algorithm for mining frequent arrangements of temporal intervals on a single sequence is applied on the converted sequence to discover frequently occurring arrangements of these regions. The proposed algorithms are tested on various DNA sequences producing results with significant biological meaning.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This article develops a neural model of how the visual system processes natural images under variable illumination conditions to generate surface lightness percepts. Previous models have clarified how the brain can compute the relative contrast of images from variably illuminate scenes. How the brain determines an absolute lightness scale that "anchors" percepts of surface lightness to us the full dynamic range of neurons remains an unsolved problem. Lightness anchoring properties include articulation, insulation, configuration, and are effects. The model quantatively simulates these and other lightness data such as discounting the illuminant, the double brilliant illusion, lightness constancy and contrast, Mondrian contrast constancy, and the Craik-O'Brien-Cornsweet illusion. The model also clarifies the functional significance for lightness perception of anatomical and neurophysiological data, including gain control at retinal photoreceptors, and spatioal contrast adaptation at the negative feedback circuit between the inner segment of photoreceptors and interacting horizontal cells. The model retina can hereby adjust its sensitivity to input intensities ranging from dim moonlight to dazzling sunlight. A later model cortical processing stages, boundary representations gate the filling-in of surface lightness via long-range horizontal connections. Variants of this filling-in mechanism run 100-1000 times faster than diffusion mechanisms of previous biological filling-in models, and shows how filling-in can occur at realistic speeds. A new anchoring mechanism called the Blurred-Highest-Luminance-As-White (BHLAW) rule helps simulate how surface lightness becomes sensitive to the spatial scale of objects in a scene. The model is also able to process natural images under variable lighting conditions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study develops a neuromorphic model of human lightness perception that is inspired by how the mammalian visual system is designed for this function. It is known that biological visual representations can adapt to a billion-fold change in luminance. How such a system determines absolute lightness under varying illumination conditions to generate a consistent interpretation of surface lightness remains an unsolved problem. Such a process, called "anchoring" of lightness, has properties including articulation, insulation, configuration, and area effects. The model quantitatively simulates such psychophysical lightness data, as well as other data such as discounting the illuminant, the double brilliant illusion, and lightness constancy and contrast effects. The model retina embodies gain control at retinal photoreceptors, and spatial contrast adaptation at the negative feedback circuit between mechanisms that model the inner segment of photoreceptors and interacting horizontal cells. The model can thereby adjust its sensitivity to input intensities ranging from dim moonlight to dazzling sunlight. A new anchoring mechanism, called the Blurred-Highest-Luminance-As-White (BHLAW) rule, helps simulate how surface lightness becomes sensitive to the spatial scale of objects in a scene. The model is also able to process natural color images under variable lighting conditions, and is compared with the popular RETINEX model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Grid cells in the dorsal segment of the medial entorhinal cortex (dMEC) show remarkable hexagonal activity patterns, at multiple spatial scales, during spatial navigation. How these hexagonal patterns arise has excited intense interest. It has previously been shown how a selforganizing map can convert firing patterns across entorhinal grid cells into hippocampal place cells that are capable of representing much larger spatial scales. Can grid cell firing fields also arise during navigation through learning within a self-organizing map? A neural model is proposed that converts path integration signals into hexagonal grid cell patterns of multiple scales. This GRID model creates only grid cell patterns with the observed hexagonal structure, predicts how these hexagonal patterns can be learned from experience, and can process biologically plausible neural input and output signals during navigation. These results support a unified computational framework for explaining how entorhinal-hippocampal interactions support spatial navigation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recognition of objects in complex visual scenes is greatly simplified by the ability to segment features belonging to different objects while grouping features belonging to the same object. This feature-binding process can be driven by the local relations between visual contours. The standard method for implementing this process with neural networks uses a temporal code to bind features together. I propose a spatial coding alternative for the dynamic binding of visual contours, and demonstrate the spatial coding method for segmenting an image consisting of three overlapping objects.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

How do visual form and motion processes cooperate to compute object motion when each process separately is insufficient? Consider, for example, a deer moving behind a bush. Here the partially occluded fragments of motion signals available to an observer must be coherently grouped into the motion of a single object. A 3D FORMOTION model comprises five important functional interactions involving the brain’s form and motion systems that address such situations. Because the model’s stages are analogous to areas of the primate visual system, we refer to the stages by corresponding anatomical names. In one of these functional interactions, 3D boundary representations, in which figures are separated from their backgrounds, are formed in cortical area V2. These depth-selective V2 boundaries select motion signals at the appropriate depths in MT via V2-to-MT signals. In another, motion signals in MT disambiguate locally incomplete or ambiguous boundary signals in V2 via MT-to-V1-to-V2 feedback. The third functional property concerns resolution of the aperture problem along straight moving contours by propagating the influence of unambiguous motion signals generated at contour terminators or corners. Here, sparse “feature tracking signals” from, e.g., line ends, are amplified to overwhelm numerically superior ambiguous motion signals along line segment interiors. In the fourth, a spatially anisotropic motion grouping process takes place across perceptual space via MT-MST feedback to integrate veridical feature-tracking and ambiguous motion signals to determine a global object motion percept. The fifth property uses the MT-MST feedback loop to convey an attentional priming signal from higher brain areas back to V1 and V2. The model's use of mechanisms such as divisive normalization, endstopping, cross-orientation inhibition, and longrange cooperation is described. Simulated data include: the degree of motion coherence of rotating shapes observed through apertures, the coherent vs. element motion percepts separated in depth during the chopsticks illusion, and the rigid vs. non-rigid appearance of rotating ellipses.