4 resultados para Sediment sources

em Boston University Digital Common


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sound propagation in shallow water is characterized by interaction with the oceans surface, volume, and bottom. In many coastal margin regions, including the Eastern U.S. continental shelf and the coastal seas of China, the bottom is composed of a depositional sandy-silty top layer. Previous measurements of narrow and broadband sound transmission at frequencies from 100 Hz to 1 kHz in these regions are consistent with waveguide calculations based on depth and frequency dependent sound speed, attenuation and density profiles. Theoretical predictions for the frequency dependence of attenuation vary from quadratic for the porous media model of M.A. Biot to linear for various competing models. Results from experiments performed under known conditions with sandy bottoms, however, have agreed with attenuation proportional to f1.84, which is slightly less than the theoretical value of f2 [Zhou and Zhang, J. Acoust. Soc. Am. 117, 2494]. This dissertation presents a reexamination of the fundamental considerations in the Biot derivation and leads to a simplification of the theory that can be coupled with site-specific, depth dependent attenuation and sound speed profiles to explain the observed frequency dependence. Long-range sound transmission measurements in a known waveguide can be used to estimate the site-specific sediment attenuation properties, but the costs and time associated with such at-sea experiments using traditional measurement techniques can be prohibitive. Here a new measurement tool consisting of an autonomous underwater vehicle and a small, low noise, towed hydrophone array was developed and used to obtain accurate long-range sound transmission measurements efficiently and cost effectively. To demonstrate this capability and to determine the modal and intrinsic attenuation characteristics, experiments were conducted in a carefully surveyed area in Nantucket Sound. A best-fit comparison between measured results and calculated results, while varying attenuation parameters, revealed the estimated power law exponent to be 1.87 between 220.5 and 1228 Hz. These results demonstrate the utility of this new cost effective and accurate measurement system. The sound transmission results, when compared with calculations based on the modified Biot theory, are shown to explain the observed frequency dependence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Temporal locality of reference in Web request streams emerges from two distinct phenomena: the popularity of Web objects and the {\em temporal correlation} of requests. Capturing these two elements of temporal locality is important because it enables cache replacement policies to adjust how they capitalize on temporal locality based on the relative prevalence of these phenomena. In this paper, we show that temporal locality metrics proposed in the literature are unable to delineate between these two sources of temporal locality. In particular, we show that the commonly-used distribution of reference interarrival times is predominantly determined by the power law governing the popularity of documents in a request stream. To capture (and more importantly quantify) both sources of temporal locality in a request stream, we propose a new and robust metric that enables accurate delineation between locality due to popularity and that due to temporal correlation. Using this metric, we characterize the locality of reference in a number of representative proxy cache traces. Our findings show that there are measurable differences between the degrees (and sources) of temporal locality across these traces, and that these differences are effectively captured using our proposed metric. We illustrate the significance of our findings by summarizing the performance of a novel Web cache replacement policy---called GreedyDual*---which exploits both long-term popularity and short-term temporal correlation in an adaptive fashion. Our trace-driven simulation experiments (which are detailed in an accompanying Technical Report) show the superior performance of GreedyDual* when compared to other Web cache replacement policies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relative importance of long-term popularity and short-term temporal correlation of references for Web cache replacement policies has not been studied thoroughly. This is partially due to the lack of accurate characterization of temporal locality that enables the identification of the relative strengths of these two sources of temporal locality in a reference stream. In [21], we have proposed such a metric and have shown that Web reference streams differ significantly in the prevalence of these two sources of temporal locality. These finding underscore the importance of a Web caching strategy that can adapt in a dynamic fashion to the prevalence of these two sources of temporal locality. In this paper, we propose a novel cache replacement algorithm, GreedyDual*, which is a generalization of GreedyDual-Size. GreedyDual* uses the metrics proposed in [21] to adjust the relative worth of long-term popularity versus short-term temporal correlation of references. Our trace-driven simulation experiments show the superior performance of GreedyDual* when compared to other Web cache replacement policies proposed in the literature.