5 resultados para Search of Optimal Paths
em Boston University Digital Common
Resumo:
Forwarding in DTNs is a challenging problem. We focus on the specific issue of forwarding in an environment where mobile devices are carried by people in a restricted physical space (e.g. a conference) and contact patterns are not predictable. We show for the first time a path explosion phenomenon between most pairs of nodes. This means that, once the first path reaches the destination, the number of subsequent paths grows rapidly with time, so there usually exist many near-optimal paths. We study the path explosion phenomenon both analytically and empirically. Our results highlight the importance of unequal contact rates across nodes for understanding the performance of forwarding algorithms. We also find that a variety of well-known forwarding algorithms show surprisingly similar performance in our setting and we interpret this fact in light of the path explosion phenomenon.
Resumo:
How do humans use predictive contextual information to facilitate visual search? How are consistently paired scenic objects and positions learned and used to more efficiently guide search in familiar scenes? For example, a certain combination of objects can define a context for a kitchen and trigger a more efficient search for a typical object, such as a sink, in that context. A neural model, ARTSCENE Search, is developed to illustrate the neural mechanisms of such memory-based contextual learning and guidance, and to explain challenging behavioral data on positive/negative, spatial/object, and local/distant global cueing effects during visual search. The model proposes how global scene layout at a first glance rapidly forms a hypothesis about the target location. This hypothesis is then incrementally refined by enhancing target-like objects in space as a scene is scanned with saccadic eye movements. The model clarifies the functional roles of neuroanatomical, neurophysiological, and neuroimaging data in visual search for a desired goal object. In particular, the model simulates the interactive dynamics of spatial and object contextual cueing in the cortical What and Where streams starting from early visual areas through medial temporal lobe to prefrontal cortex. After learning, model dorsolateral prefrontal cortical cells (area 46) prime possible target locations in posterior parietal cortex based on goalmodulated percepts of spatial scene gist represented in parahippocampal cortex, whereas model ventral prefrontal cortical cells (area 47/12) prime possible target object representations in inferior temporal cortex based on the history of viewed objects represented in perirhinal cortex. The model hereby predicts how the cortical What and Where streams cooperate during scene perception, learning, and memory to accumulate evidence over time to drive efficient visual search of familiar scenes.
Resumo:
Recent advances in processor speeds, mobile communications and battery life have enabled computers to evolve from completely wired to completely mobile. In the most extreme case, all nodes are mobile and communication takes place at available opportunities – using both traditional communication infrastructure as well as the mobility of intermediate nodes. These are mobile opportunistic networks. Data communication in such networks is a difficult problem, because of the dynamic underlying topology, the scarcity of network resources and the lack of global information. Establishing end-to-end routes in such networks is usually not feasible. Instead a store-and-carry forwarding paradigm is better suited for such networks. This dissertation describes and analyzes algorithms for forwarding of messages in such networks. In order to design effective forwarding algorithms for mobile opportunistic networks, we start by first building an understanding of the set of all paths between nodes, which represent the available opportunities for any forwarding algorithm. Relying on real measurements, we enumerate paths between nodes and uncover what we refer to as the path explosion effect. The term path explosion refers to the fact that the number of paths between a randomly selected pair of nodes increases exponentially with time. We draw from the theory of epidemics to model and explain the path explosion effect. This is the first contribution of the thesis, and is a key observation that underlies subsequent results. Our second contribution is the study of forwarding algorithms. For this, we rely on trace driven simulations of different algorithms that span a range of design dimensions. We compare the performance (success rate and average delay) of these algorithms. We make the surprising observation that most algorithms we consider have roughly similar performance. We explain this result in light of the path explosion phenomenon. While the performance of most algorithms we studied was roughly the same, these algorithms differed in terms of cost. This prompted us to focus on designing algorithms with the explicit intent of reducing costs. For this, we cast the problem of forwarding as an optimal stopping problem. Our third main contribution is the design of strategies based on optimal stopping principles which we refer to as Delegation schemes. Our analysis shows that using a delegation scheme reduces cost over naive forwarding by a factor of O(√N), where N is the number of nodes in the network. We further validate this result on real traces, where the cost reduction observed is even greater. Our results so far include a key assumption, which is unbounded buffers on nodes. Next, we relax this assumption, so that the problem shifts to one of prioritization of messages for transmission and dropping. Our fourth contribution is the study of message prioritization schemes, combined with forwarding. Our main result is that one achieves higher performance by assigning higher priorities to young messages in the network. We again interpret this result in light of the path explosion effect.
Resumo:
The effectiveness of service provisioning in largescale networks is highly dependent on the number and location of service facilities deployed at various hosts. The classical, centralized approach to determining the latter would amount to formulating and solving the uncapacitated k-median (UKM) problem (if the requested number of facilities is fixed), or the uncapacitated facility location (UFL) problem (if the number of facilities is also to be optimized). Clearly, such centralized approaches require knowledge of global topological and demand information, and thus do not scale and are not practical for large networks. The key question posed and answered in this paper is the following: "How can we determine in a distributed and scalable manner the number and location of service facilities?" We propose an innovative approach in which topology and demand information is limited to neighborhoods, or balls of small radius around selected facilities, whereas demand information is captured implicitly for the remaining (remote) clients outside these neighborhoods, by mapping them to clients on the edge of the neighborhood; the ball radius regulates the trade-off between scalability and performance. We develop a scalable, distributed approach that answers our key question through an iterative reoptimization of the location and the number of facilities within such balls. We show that even for small values of the radius (1 or 2), our distributed approach achieves performance under various synthetic and real Internet topologies that is comparable to that of optimal, centralized approaches requiring full topology and demand information.
Resumo:
A neural network system, NAVITE, for incremental trajectory generation and obstacle avoidance is presented. Unlike other approaches, the system is effective in unstructured environments. Multimodal inforrnation from visual and range data is used for obstacle detection and to eliminate uncertainty in the measurements. Optimal paths are computed without explicitly optimizing cost functions, therefore reducing computational expenses. Simulations of a planar mobile robot (including the dynamic characteristics of the plant) in obstacle-free and object avoidance trajectories are presented. The system can be extended to incorporate global map information into the local decision-making process.