3 resultados para Scalar Functions of one Variable
em Boston University Digital Common
Resumo:
Recent studies have noted that vertex degree in the autonomous system (AS) graph exhibits a highly variable distribution [15, 22]. The most prominent explanatory model for this phenomenon is the Barabási-Albert (B-A) model [5, 2]. A central feature of the B-A model is preferential connectivity—meaning that the likelihood a new node in a growing graph will connect to an existing node is proportional to the existing node’s degree. In this paper we ask whether a more general explanation than the B-A model, and absent the assumption of preferential connectivity, is consistent with empirical data. We are motivated by two observations: first, AS degree and AS size are highly correlated [11]; and second, highly variable AS size can arise simply through exponential growth. We construct a model incorporating exponential growth in the size of the Internet, and in the number of ASes. We then show via analysis that such a model yields a size distribution exhibiting a power-law tail. In such a model, if an AS’s link formation is roughly proportional to its size, then AS degree will also show high variability. We instantiate such a model with empirically derived estimates of growth rates and show that the resulting degree distribution is in good agreement with that of real AS graphs.
Resumo:
One-and two-dimensional cellular automata which are known to be fault-tolerant are very complex. On the other hand, only very simple cellular automata have actually been proven to lack fault-tolerance, i.e., to be mixing. The latter either have large noise probability ε or belong to the small family of two-state nearest-neighbor monotonic rules which includes local majority voting. For a certain simple automaton L called the soldiers rule, this problem has intrigued researchers for the last two decades since L is clearly more robust than local voting: in the absence of noise, L eliminates any finite island of perturbation from an initial configuration of all 0's or all 1's. The same holds for a 4-state monotonic variant of L, K, called two-line voting. We will prove that the probabilistic cellular automata Kε and Lε asymptotically lose all information about their initial state when subject to small, strongly biased noise. The mixing property trivially implies that the systems are ergodic. The finite-time information-retaining quality of a mixing system can be represented by its relaxation time Relax(⋅), which measures the time before the onset of significant information loss. This is known to grow as (1/ε)^c for noisy local voting. The impressive error-correction ability of L has prompted some researchers to conjecture that Relax(Lε) = 2^(c/ε). We prove the tight bound 2^(c1log^21/ε) < Relax(Lε) < 2^(c2log^21/ε) for a biased error model. The same holds for Kε. Moreover, the lower bound is independent of the bias assumption. The strong bias assumption makes it possible to apply sparsity/renormalization techniques, the main tools of our investigation, used earlier in the opposite context of proving fault-tolerance.
Resumo:
If every lambda-abstraction in a lambda-term M binds at most one variable occurrence, then M is said to be "linear". Many questions about linear lambda-terms are relatively easy to answer, e.g. they all are beta-strongly normalizing and all are simply-typable. We extend the syntax of the standard lambda-calculus L to a non-standard lambda-calculus L^ satisfying a linearity condition generalizing the notion in the standard case. Specifically, in L^ a subterm Q of a term M can be applied to several subterms R1,...,Rk in parallel, which we write as (Q. R1 \wedge ... \wedge Rk). The appropriate notion of beta-reduction beta^ for the calculus L^ is such that, if Q is the lambda-abstraction (\lambda x.P) with m\geq 0 bound occurrences of x, the reduction can be carried out provided k = max(m,1). Every M in L^ is thus beta^-SN. We relate standard beta-reduction and non-standard beta^-reduction in several different ways, and draw several consequences, e.g. a new simple proof for the fact that a standard term M is beta-SN iff M can be assigned a so-called "intersection" type ("top" type disallowed).