3 resultados para SNR maximisation

em Boston University Digital Common


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stabilized micron-sized bubbles, known as contrast agents, are often injected into the body to enhance ultrasound imaging of blood flow. The ability to detect such bubbles in blood depends on the relative magnitude of the acoustic power backscattered from the microbubbles (‘signal’) to the power backscattered from the red blood cells (‘noise’). Erythrocytes are acoustically small (Rayleigh regime), weak scatterers, and therefore the backscatter coefficient (BSC) of blood increases as the fourth power of frequency throughout the diagnostic frequency range. Microbubbles, on the other hand, are either resonant or super-resonant in the range 5-30 MHz. Above resonance, their total scattering cross-section remains constant with increasing frequency. In the present thesis, a theoretical model of the BSC of a suspension of red blood cells is presented and compared to the BSC of Optison® contrast agent microbubbles. It is predicted that, as the frequency increases, the BSC of red blood cell suspensions eventually exceeds the BSC of the strong scattering microbubbles, leading to a dramatic reduction in signal-to-noise ratio (SNR). This decrease in SNR with increasing frequency was also confirmed experimentally by use of an active cavitation detector for different concentrations of Optison® microbubbles in erythrocyte suspensions of different hematocrits. The magnitude of the observed decrease in SNR correlated well with theoretical predictions in most cases, except for very dense suspensions of red blood cells, where it is hypothesized that the close proximity of erythrocytes inhibits the acoustic response of the microbubbles.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Before choosing, it helps to know both the expected value signaled by a predictive cue and the associated uncertainty that the reward will be forthcoming. Recently, Fiorillo et al. (2003) found the dopamine (DA) neurons of the SNc exhibit sustained responses related to the uncertainty that a cure will be followed by reward, in addition to phasic responses related to reward prediction errors (RPEs). This suggests that cue-dependent anticipations of the timing, magnitude, and uncertainty of rewards are learned and reflected in components of the DA signals broadcast by SNc neurons. What is the minimal local circuit model that can explain such multifaceted reward-related learning? A new computational model shows how learned uncertainty responses emerge robustly on single trial along with phasic RPE responses, such that both types of DA responses exhibit the empirically observed dependence on conditional probability, expected value of reward, and time since onset of the reward-predicting cue. The model includes three major pathways for computing: immediate expected values of cures, timed predictions of reward magnitudes (and RPEs), and the uncertainty associated with these predictions. The first two model pathways refine those previously modeled by Brown et al. (1999). A third, newly modeled, pathway is formed by medium spiny projection neurons (MSPNs) of the matrix compartment of the striatum, whose axons co-release GABA and a neuropeptide, substance P, both at synapses with GABAergic neurons in the SNr and with the dendrites (in SNr) of DA neurons whose somas are in ventral SNc. Co-release enables efficient computation of sustained DA uncertainty responses that are a non-monotonic function of the conditonal probability that a reward will follow the cue. The new model's incorporation of a striatal microcircuit allowed it to reveals that variability in striatal cholinergic transmission can explain observed difference, between monkeys, in the amplitutude of the non-monotonic uncertainty function. Involvement of matriceal MSPNs and striatal cholinergic transmission implpies a relation between uncertainty in the cue-reward contigency and action-selection functions of the basal ganglia. The model synthesizes anatomical, electrophysiological and behavioral data regarding the midbrain DA system in a novel way, by relating the ability to compute uncertainty, in parallel with other aspects of reward contingencies, to the unique distribution of SP inputs in ventral SN.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Oculomotor tracking of moving objects is an important component of visually based cognition and planning. Such tracking is achieved by a combination of saccades and smooth pursuit eye movements. In particular, the saccadic and smooth pursuit systems interact to often choose the same target, and to maximize its visibility through time. How do multiple brain regions interact, including frontal cortical areas, to decide the choice of a target among several competing moving stimuli? How is target selection information that is created by a bias (e.g., electrical stimulation) transferred from one movement system to another? These saccade-pursuit interactions are clarified by a new computational neural model, which describes interactions among motion processing areas MT, MST, FPA, DLPN; saccade specification, selection, and planning areas LIP, FEF, SNr, SC; the saccadic generator in the brain stem; and the cerebellum. Model simulations explain a broad range of neuroanatomical and neurophysiological data. These results are in contrast with the simplest parallel model with no interactions between saccades and pursuit than common-target selection and recruitment of shared motoneurons. Actual tracking episodes in primates reveal multiple systematic deviations from predictions of the simplest parallel model, which are explained by the current model.