2 resultados para Rubem Fonseca

em Boston University Digital Common


Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of TCP's critical tasks is to determine which packets are lost in the network, as a basis for control actions (flow control and packet retransmission). Modern TCP implementations use two mechanisms: timeout, and fast retransmit. Detection via timeout is necessarily a time-consuming operation; fast retransmit, while much quicker, is only effective for a small fraction of packet losses. In this paper we consider the problem of packet loss detection in TCP more generally. We concentrate on the fact that TCP's control actions are necessarily triggered by inference of packet loss, rather than conclusive knowledge. This suggests that one might analyze TCP's packet loss detection in a standard inferencing framework based on probability of detection and probability of false alarm. This paper makes two contributions to that end: First, we study an example of more general packet loss inference, namely optimal Bayesian packet loss detection based on round trip time. We show that for long-lived flows, it is frequently possible to achieve high detection probability and low false alarm probability based on measured round trip time. Second, we construct an analytic performance model that incorporates general packet loss inference into TCP. We show that for realistic detection and false alarm probabilities (as are achievable via our Bayesian detector) and for moderate packet loss rates, the use of more general packet loss inference in TCP can improve throughput by as much as 25%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There has been considerable work done in the study of Web reference streams: sequences of requests for Web objects. In particular, many studies have looked at the locality properties of such streams, because of the impact of locality on the design and performance of caching and prefetching systems. However, a general framework for understanding why reference streams exhibit given locality properties has not yet emerged. In this work we take a first step in this direction, based on viewing the Web as a set of reference streams that are transformed by Web components (clients, servers, and intermediaries). We propose a graph-based framework for describing this collection of streams and components. We identify three basic stream transformations that occur at nodes of the graph: aggregation, disaggregation and filtering, and we show how these transformations can be used to abstract the effects of different Web components on their associated reference streams. This view allows a structured approach to the analysis of why reference streams show given properties at different points in the Web. Applying this approach to the study of locality requires good metrics for locality. These metrics must meet three criteria: 1) they must accurately capture temporal locality; 2) they must be independent of trace artifacts such as trace length; and 3) they must not involve manual procedures or model-based assumptions. We describe two metrics meeting these criteria that each capture a different kind of temporal locality in reference streams. The popularity component of temporal locality is captured by entropy, while the correlation component is captured by interreference coefficient of variation. We argue that these metrics are more natural and more useful than previously proposed metrics for temporal locality. We use this framework to analyze a diverse set of Web reference traces. We find that this framework can shed light on how and why locality properties vary across different locations in the Web topology. For example, we find that filtering and aggregation have opposing effects on the popularity component of the temporal locality, which helps to explain why multilevel caching can be effective in the Web. Furthermore, we find that all transformations tend to diminish the correlation component of temporal locality, which has implications for the utility of different cache replacement policies at different points in the Web.