5 resultados para Round Robin Database Measurement Archive

em Boston University Digital Common


Relevância:

100.00% 100.00%

Publicador:

Resumo:

To construct high performance Web servers, system builders are increasingly turning to distributed designs. An important challenge that arises in distributed Web servers is the need to direct incoming connections to individual hosts. Previous methods for connection routing have employed a centralized node which handles all incoming requests. In contrast, we propose a distributed approach, called Distributed Packet Rewriting (DPR), in which all hosts of the distributed system participate in connection routing. We argue that this approach promises better scalability and fault-tolerance than the centralized approach. We describe our implementation of four variants of DPR and compare their performance. We show that DPR provides performance comparable to centralized alternatives, measured in terms of throughput and delay under the SPECweb96 benchmark. Finally, we argue that DPR is particularly attractive both for small scale systems and for systems following the emerging trend toward increasingly intelligent I/O subsystems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we propose and evaluate an implementation of a prototype scalable web server. The prototype consists of a load-balanced cluster of hosts that collectively accept and service TCP connections. The host IP addresses are advertised using the Round Robin DNS technique, allowing any host to receive requests from any client. Once a client attempts to establish a TCP connection with one of the hosts, a decision is made as to whether or not the connection should be redirected to a different host---namely, the host with the lowest number of established connections. We use the low-overhead Distributed Packet Rewriting (DPR) technique to redirect TCP connections. In our prototype, each host keeps information about connections in hash tables and linked lists. Every time a packet arrives, it is examined to see if it has to be redirected or not. Load information is maintained using periodic broadcasts amongst the cluster hosts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

http://www.archive.org/details/jamesevans00maclrich

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern cellular channels in 3G networks incorporate sophisticated power control and dynamic rate adaptation which can have a significant impact on adaptive transport layer protocols, such as TCP. Though there exists studies that have evaluated the performance of TCP over such networks, they are based solely on observations at the transport layer and hence have no visibility into the impact of lower layer dynamics, which are a key characteristic of these networks. In this work, we present a detailed characterization of TCP behavior based on cross-layer measurement of transport, as well as RF and MAC layer parameters. In particular, through a series of active TCP/UDP experiments and measurement of the relevant variables at all three layers, we characterize both, the wireless scheduler in a commercial CDMA2000 network and its impact on TCP dynamics. Somewhat surprisingly, our findings indicate that the wireless scheduler is mostly insensitive to channel quality and sector load over short timescales and is mainly affected by the transport layer data rate. Furthermore, we empirically demonstrate the impact of the wireless scheduler on various TCP parameters such as the round trip time, throughput and packet loss rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Modern cellular channels in 3G networks incorporate sophisticated power control and dynamic rate adaptation which can have significant impact on adaptive transport layer protocols, such as TCP. Though there exists studies that have evaluated the performance of TCP over such networks, they are based solely on observations at the transport layer and hence have no visibility into the impact of lower layer dynamics, which are a key characteristic of these networks. In this work, we present a detailed characterization of TCP behavior based on cross-layer measurement of transport layer, as well as RF and MAC layer parameters. In particular, through a series of active TCP/UDP experiments and measurement of the relevant variables at all three layers, we characterize both, the wireless scheduler and the radio link protocol in a commercial CDMA2000 network and assess their impact on TCP dynamics. Somewhat surprisingly, our findings indicate that the wireless scheduler is mostly insensitive to channel quality and sector load over short timescales and is mainly affected by the transport layer data rate. Furthermore, with the help of a robust correlation measure, Normalized Mutual Information, we were able to quantify the impact of the wireless scheduler and the radio link protocol on various TCP parameters such as the round trip time, throughput and packet loss rate.