6 resultados para Risque de devise
em Boston University Digital Common
Resumo:
With the increased use of "Virtual Machines" (VMs) as vehicles that isolate applications running on the same host, it is necessary to devise techniques that enable multiple VMs to share underlying resources both fairly and efficiently. To that end, one common approach is to deploy complex resource management techniques in the hosting infrastructure. Alternately, in this paper, we advocate the use of self-adaptation in the VMs themselves based on feedback about resource usage and availability. Consequently, we define a "Friendly" VM (FVM) to be a virtual machine that adjusts its demand for system resources, so that they are both efficiently and fairly allocated to competing FVMs. Such properties are ensured using one of many provably convergent control rules, such as AIMD. By adopting this distributed application-based approach to resource management, it is not necessary to make assumptions about the underlying resources nor about the requirements of FVMs competing for these resources. To demonstrate the elegance and simplicity of our approach, we present a prototype implementation of our FVM framework in User-Mode Linux (UML)-an implementation that consists of less than 500 lines of code changes to UML. We present an analytic, control-theoretic model of FVM adaptation, which establishes convergence and fairness properties. These properties are also backed up with experimental results using our prototype FVM implementation.
Resumo:
Understanding and modeling the factors that underlie the growth and evolution of network topologies are basic questions that impact capacity planning, forecasting, and protocol research. Early topology generation work focused on generating network-wide connectivity maps, either at the AS-level or the router-level, typically with an eye towards reproducing abstract properties of observed topologies. But recently, advocates of an alternative "first-principles" approach question the feasibility of realizing representative topologies with simple generative models that do not explicitly incorporate real-world constraints, such as the relative costs of router configurations, into the model. Our work synthesizes these two lines by designing a topology generation mechanism that incorporates first-principles constraints. Our goal is more modest than that of constructing an Internet-wide topology: we aim to generate representative topologies for single ISPs. However, our methods also go well beyond previous work, as we annotate these topologies with representative capacity and latency information. Taking only demand for network services over a given region as input, we propose a natural cost model for building and interconnecting PoPs and formulate the resulting optimization problem faced by an ISP. We devise hill-climbing heuristics for this problem and demonstrate that the solutions we obtain are quantitatively similar to those in measured router-level ISP topologies, with respect to both topological properties and fault-tolerance.
Resumo:
Commonly, research work in routing for delay tolerant networks (DTN) assumes that node encounters are predestined, in the sense that they are the result of unknown, exogenous processes that control the mobility of these nodes. In this paper, we argue that for many applications such an assumption is too restrictive: while the spatio-temporal coordinates of the start and end points of a node's journey are determined by exogenous processes, the specific path that a node may take in space-time, and hence the set of nodes it may encounter could be controlled in such a way so as to improve the performance of DTN routing. To that end, we consider a setting in which each mobile node is governed by a schedule consisting of a ist of locations that the node must visit at particular times. Typically, such schedules exhibit some level of slack, which could be leveraged for DTN message delivery purposes. We define the Mobility Coordination Problem (MCP) for DTNs as follows: Given a set of nodes, each with its own schedule, and a set of messages to be exchanged between these nodes, devise a set of node encounters that minimize message delivery delays while satisfying all node schedules. The MCP for DTNs is general enough that it allows us to model and evaluate some of the existing DTN schemes, including data mules and message ferries. In this paper, we show that MCP for DTNs is NP-hard and propose two detour-based approaches to solve the problem. The first (DMD) is a centralized heuristic that leverages knowledge of the message workload to suggest specific detours to optimize message delivery. The second (DNE) is a distributed heuristic that is oblivious to the message workload, and which selects detours so as to maximize node encounters. We evaluate the performance of these detour-based approaches using extensive simulations based on synthetic workloads as well as real schedules obtained from taxi logs in a major metropolitan area. Our evaluation shows that our centralized, workload-aware DMD approach yields the best performance, in terms of message delay and delivery success ratio, and that our distributed, workload-oblivious DNE approach yields favorable performance when compared to approaches that require the use of data mules and message ferries.
Resumo:
The initial phase in a content distribution (file sharing) scenario is a delicate phase due to the lack of global knowledge and the dynamics of the overlay. An unwise distribution of the pieces in this phase can cause delays in reaching steady state, thus increasing file download times. We devise a scheduling algorithm at the seed (source peer with full content), based on a proportional fair approach, and we implement it on a real file sharing client [1]. In dynamic overlays, our solution improves up to 25% the average downloading time of a standard protocol ala BitTorrent.
Resumo:
Attributing a dollar value to a keyword is an essential part of running any profitable search engine advertising campaign. When an advertiser has complete control over the interaction with and monetization of each user arriving on a given keyword, the value of that term can be accurately tracked. However, in many instances, the advertiser may monetize arrivals indirectly through one or more third parties. In such cases, it is typical for the third party to provide only coarse-grained reporting: rather than report each monetization event, users are aggregated into larger channels and the third party reports aggregate information such as total daily revenue for each channel. Examples of third parties that use channels include Amazon and Google AdSense. In such scenarios, the number of channels is generally much smaller than the number of keywords whose value per click (VPC) we wish to learn. However, the advertiser has flexibility as to how to assign keywords to channels over time. We introduce the channelization problem: how do we adaptively assign keywords to channels over the course of multiple days to quickly obtain accurate VPC estimates of all keywords? We relate this problem to classical results in weighing design, devise new adaptive algorithms for this problem, and quantify the performance of these algorithms experimentally. Our results demonstrate that adaptive weighing designs that exploit statistics of term frequency, variability in VPCs across keywords, and flexible channel assignments over time provide the best estimators of keyword VPCs.
Resumo:
We propose to investigate a model-based technique for encoding non-rigid object classes in terms of object prototypes. Objects from the same class can be parameterized by identifying shape and appearance invariants of the class to devise low-level representations. The approach presented here creates a flexible model for an object class from a set of prototypes. This model is then used to estimate the parameters of low-level representation of novel objects as combinations of the prototype parameters. Variations in the object shape are modeled as non-rigid deformations. Appearance variations are modeled as intensity variations. In the training phase, the system is presented with several example prototype images. These prototype images are registered to a reference image by a finite element-based technique called Active Blobs. The deformations of the finite element model to register a prototype image with the reference image provide the shape description or shape vector for the prototype. The shape vector for each prototype, is then used to warp the prototype image onto the reference image and obtain the corresponding texture vector. The prototype texture vectors, being warped onto the same reference image have a pixel by pixel correspondence with each other and hence are "shape normalized". Given sufficient number of prototypes that exhibit appropriate in-class variations, the shape and the texture vectors define a linear prototype subspace that spans the object class. Each prototype is a vector in this subspace. The matching phase involves the estimation of a set of combination parameters for synthesis of the novel object by combining the prototype shape and texture vectors. The strengths of this technique lie in the combined estimation of both shape and appearance parameters. This is in contrast with the previous approaches where shape and appearance parameters were estimated separately.